933 resultados para MODULATES BAROREFLEX
Resumo:
Three-dimensional positioning of the nuclear genome plays an important role in the epigenetic regulation of genes. Although nucleographic domain compartmentalization in the regulation of epigenetic state and gene expression is well established in higher organisms, it remains poorly understood in the pathogenic parasite Plasmodium falciparum. In the present study, we report that two histone tail modifications, H3K9Ac and H3K14Ac, are differentially distributed in the parasite nucleus. We find colocalization of active gene promoters such as Tu1 (tubulin-1 expressed in the asexual stages) with H3K9Ac marks at the nuclear periphery. By contrast, asexual stage inactive gene promoters such as Pfg27 (gametocyte marker) and Pfs28 (ookinete marker) occupy H3K9Ac devoid zones at the nuclear periphery. The histone H3K9 is predominantly acetylated by the PCAF/GCN5 class of lysine acetyltransferases, which is well characterized in the parasite. Interestingly, embelin, a specific inhibitor of PCAF/GCN5 family histone acetyltransferase, selectively decreases total H3K9Ac acetylation levels (but not H3K14Ac levels) around the var gene promoters, leading to the downregulation of var gene expression, suggesting interplay among histone acetylation status, as well as subnuclear compartmentalization of different genes and their activation in the parasites. Finally, we found that embelin inhibited parasitic growth at the low micromolar range, raising the possibility of using histone acetyltransferases as a target for antimalarial therapy.
Resumo:
Huntington's disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
7 p.
Resumo:
The network oscillation and synaptic plasticity are known to be regulated by GABAergic inhibition, but how they are affected by changes in the GABA transporter activity remains unclear. Here we show that in the CA1 region of mouse hippocampus, pharmacolog
Resumo:
Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable ex
Resumo:
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.
Resumo:
Establishing a function for the neuromodulator serotonin in human decision-making has proved remarkably difficult because if its complex role in reward and punishment processing. In a novel choice task where actions led concurrently and independently to the stochastic delivery of both money and pain, we studied the impact of decreased brain serotonin induced by acute dietary tryptophan depletion. Depletion selectively impaired both behavioral and neural representations of reward outcome value, and hence the effective exchange rate by which rewards and punishments were compared. This effect was computationally and anatomically distinct from a separate effect on increasing outcome-independent choice perseveration. Our results provide evidence for a surprising role for serotonin in reward processing, while illustrating its complex and multifarious effects.
Resumo:
Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to block central opioid function while subjects performed a gambling task associated with rewards and losses of different magnitudes, in which the mean expected value was always zero. A graded influence of naloxone on reward outcome was evident in an attenuation of pleasure ratings for larger reward outcomes, an effect mirrored in attenuation of brain activity to increasing reward magnitude in rostral anterior cingulate cortex. A more striking effect was seen for losses such that under naloxone all levels of negative outcome were rated as more unpleasant. This hedonic effect was associated with enhanced activity in anterior insula and caudal anterior cingulate cortex, areas implicated in aversive processing. Our data indicate that a central opioid system contributes to both reward and loss processing in humans and directly modulates the hedonic experience of outcomes.
Resumo:
1. The importance of vertical mixing in modulating the impact of UVR on phytoplankton photosynthesis was assessed in a tropical, shallow lake in southern China from late winter to mid-spring of 2005. 2. Daily cycles of fluorescence measurements (i.e. photosynthetic quantum yield, Y) were performed on both 'static' and in situ samples. Static samples were of surface water incubated at the surface of the lake under three radiation treatments - PAB (PAR + UVR, 280-700 nm), PA (PAR + UV-A, 320-700 nm) and P (PAR, 400-700 nm). In situ samples were collected every hour at three different depths - 0, 0.5 and 1 m. 3. The general daily pattern was of a significant decrease in Y from early morning towards noon, with partial recovery in the afternoon. Samples incubated under static conditions always had lower Y than those under in situ conditions at the same time of the day. 4. Under stratified conditions, no overall impact of UVR impact could be detected in situ when compared with the static samples. Further rapid vertical mixing not only counteracted the impact of UVR but also stimulated photosynthetic efficiency. 5. Based on these measurements of fluorescence, the mixing speed of cells moving within the epilimnion was estimated to range between 0.53 and 6.5 cm min(-1). 6. These data show that mixing is very important in modulating the photosynthetic response of phytoplankton exposed to natural radiation and, hence, strongly conditions the overall impact of UVR on aquatic ecosystems.
Resumo:
The present study was performed to obtain evidence of the radioprotective function of melatonin at different administration levels on carbon ion-induced mouse testicular damage. Outbred Kun-Ming strain mice were divided into six groups, each composed of eight animals: control group, melatonin alone group, irradiation group and three melatonin plus irradiation-treated groups. An acute study was carried out to determine alterations in DNA-single strand break, cell apoptosis, and oxidative stress parameters as well as histopathology in mouse testis 24 h after whole-body irradiation with a single dose of 4 Gy Tie results showed that pre-treatment and post-treatment with high-dose melatonin (10 mg/kg) both significantly alleviated carbon ion-induced acute testicular damage, a greater radioprotective effect being observed in the pre-treatment group. On the other hand, low-dose melatonin (1 mg/kg) had a limited radioprotective effect on irradiation-induced degeneration and DNA lesions in mouse testis. Taken together, the data suggest that prophylactic treatment with a higher dose of melatonin is probably advisable to protect against the effects of heavy-ion irradiation.
Resumo:
Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.
Resumo:
The relationship of mitochondrial dynamics and function to pluripotency are rather poorly understood aspects of stem cell biology. Here we show that growth factor erv1-like (Gfer) is involved in preserving mouse embryonic stem cell (ESC) mitochondrial morphology and function. Knockdown (KD) of Gfer in ESCs leads to decreased pluripotency marker expression, embryoid body (EB) formation, cell survival, and loss of mitochondrial function. Mitochondria in Gfer-KD ESCs undergo excessive fragmentation and mitophagy, whereas those in ESCs overexpressing Gfer appear elongated. Levels of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) are highly elevated in Gfer-KD ESCs and decreased in Gfer-overexpressing cells. Treatment with a specific inhibitor of Drp1 rescues mitochondrial function and apoptosis, whereas expression of Drp1-dominant negative resulted in the restoration of pluripotency marker expression in Gfer-KD ESCs. Altogether, our data reveal a novel prosurvival role for Gfer in maintaining mitochondrial fission-fusion dynamics in pluripotent ESCs.
Resumo:
Background: Serotonin signaling influences social behavior in both human and nonhuman primates. In humans, variation upstream of the promoter region of the serotonin transporter gene (5-HTTLPR) has recently been shown to influence both behavioral measures of social anxiety and amygdala response to social threats. Here we show that length polymorphisms in 5-HTTLPR predict social reward and punishment in rhesus macaques, a species in which 5-HTTLPR variation is analogous to that of humans. Methodology/Principal Findings: In contrast to monkeys with two copies of the long allele (L/L), monkeys with one copy of the short allele of this gene (S/L) spent less time gazing at face than non-face images, less time looking in the eye region of faces, and had larger pupil diameters when gazing at photos of a high versus low status male macaques. Moreover, in a novel primed gambling task, presentation of photos of high status male macaques promoted risk-aversion in S/L monkeys but promoted risk-seeking in L/L monkeys. Finally, as measured by a "pay-per-view" task, S/L monkeys required juice payment to view photos of high status males, whereas L/L monkeys sacrificed fluid to see the same photos. Conclusions/Significance: These data indicate that genetic variation in serotonin function contributes to social reward and punishment in rhesus macaques, and thus shapes social behavior in humans and rhesus macaques alike. © 2009 Watson et al.