968 resultados para MODIFIED PT(111) ELECTRODES


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of palladium clusters, generated with the electrochemical scanning tunneling microscope, have been investigated both by experiments and by computer simulations. The clusters are found to be larger and more stable if the tip is moved further towards the electrode surface in the generation process. The simulations suggest that the larger clusters consist of a palladium - gold mixture, which is more stable than pure palladium. Dissolution of the clusters occurs from the edges rather than layer by layer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic formation of N2O and NO2 were studied employing density functional theory with generalized gradient approximations, in order to investigate the microscopic reaction pathways of these catalytic processes on a Pt(111) surface. Transition states and reaction barriers for the addition of chemisorbed N or chemisorbed O to NO(ads) producing N2O and NO2, respectively, were calculated. The N2O transition state involves bond formation across the hcp hollow site with an associated reaction barrier of 1.78 eV. NO2 formation favors a fcc hollow site transition state with a barrier of 1.52 eV. The mechanisms for both reactions are compared to CO oxidation on the same surface. The activation of the chemisorbed NO and the chemisorbed N or O from the energetically stable initial state to the transition state are both significant contributors to the overall reaction barrier E-a, in contrast to CO oxidation in which the activation of the O-(ads) is much greater than CO(ads) activation. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density-functional theory has been used to investigate the chemisorption of S, SH, and H2S as well as the coadsorption of S and H and SH and H on Pt(111). In addition reaction pathways and energy profiles for the conversion of adsorbed S and H into gas-phase H2S have been determined. It has been found that S, SH, and H2S bind preferentially at face-centered-cubic (fcc), bridge, and top sites, respectively. Both the S+H and SH+H reactions have high barriers (similar to1 eV) and high exothermicities (similar to1 eV). This reveals that adsorbed H2S and SH are highly unstable adsorbates on Pt(111) and that adsorbed S (and H) is the most stable SHX (X=0,1,2) intermediate on Pt(111) (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alloying metals is often used as an effective way to enhance the reactivity of surfaces. Aiming to shed light on the effect of alloying on reaction mechanisms, we carry out a comparative study of CO oxidation on Cu3Pt(111), Pt(111), and Cu(111) by means of density functional theory calculations. Alloying effects on the bonding sites and bonding energies of adsorbates, and the reaction pathways are investigated. It is shown that CO preferentially adsorbs on an atop site of Pt and O preferentially adsorbs on a fcc hollow site of three Cu atoms on Cu3Pt(111). It is also found that the adsorption energies of CO (or O-a) decreases on Pt (or Cu) on the alloy surface with respect to those on pure metals. More importantly, having identified the transition states for CO oxidation on those three surfaces, we found an interesting trend for the reaction barrier on the three surfaces. Similar to the adsorption energies, the reaction barrier on Cu3Pt possesses an intermediate value of those on pure Pt and Cu metals. The physical origin of these results has been analyzed in detail. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microkinetic model is developed in the free energy landscape based on density functional theory (DFT) to quantitatively investigate the reaction mechanism of chemoselective partial hydrogenation of crotonaldehyde to crotyl alcohol over Pt(1 1 1) at the temperature of 353 K. Three different methods (mobile, immobile and collision theory models) were carried out to obtain free energy barrier of adsorption/desorption processes. The results from mobile and collision theory models are similar. The calculated TOFs from both models are close to the experiment value. However, for the immobile model, in which the free energy barrier of desorption approaches the energy barrier, the calculated TOF is 2 orders of magnitude lower than the other models. The difficulty of adsorption/ desorption may be overestimated in the immobile model. In addition, detailed analyses show that for the surface hydrogenation elementary steps, the entropy and internal energy effects are small under the reaction condition, while the zero-point-energy (ZPE) correction is significant, especially for the multi-step hydrogenation reaction. The total energy with the ZPE correction approaches to the full free energy calculation for the surface reaction under the reaction condition. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microkinetics based on density function theory (DFT) calculations is utilized to investigate the reaction mechanism of crotonaldehyde hydrogenation on Pt(111) in the free energy landscape. The dominant reaction channel of each hydrogenation product is identified. Each of them begins with the first surface hydrogenation of the carbonyl oxygen of crotonaldehyde on the surface. A new mechanism, 1,4-addition mechanism generating enols (butenol), which readily tautomerize to saturated aldehydes (butanal), is identified as a primary mechanism to yield saturated aldehydes instead of the 3,4-addition via direct hydrogenation of the ethylenic bond. The calculation results also show that the full hydrogenation product, butylalcohol, mainly stems from the deep hydrogenation of surface open-shell dihydrogenation intermediates. It is found that the apparent barriers of the dominant pathways to yield three final products are similar on P(111), which makes it difficult to achieve a high selectivity to the desired crotyl alcohol (COL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, thermal, chemisorptive, and electronic properties of Ce on Pt{111} are studied by photoemission, Auger spectroscopy, scanning tunnel microscope (STM), and low-energy electron diffraction (LEED). Stranski-Krastanov-like growth of low-density Ce layers is accompanied by substantial valence charge transfer from Ce to Pt: in line with this, the measured dipole moment and polarizability of adsorbed Ce at low coverages are 7.2 x 10(-30) C m and similar to 1.3x10(-29) m(3), respectively. Pt-Ce intermixing commences at similar to 400 K and with increasing temperature a sequence of five different ordered surface alloys evolves. The symmetry, periodicities, and rotational epitaxy observed by LEED are in good accord with the STM data which reveal the true complexity of the system. The Various bimetallic surface phases are based on growth of crystalline Pt5Ce, a hexagonal layer structure consisting of alternating layers of Pt2Ce and Kagome nets of Pt atoms. This characteristic ABAB layered arrangement of the surface alloys is clearly imaged, and chemisorption data permit a distinction to be made between the more reactive Pt2Ce layer and the less reactive Pt Kagome net. Either type of layer can appear at the surface as the terminating structure, thicker films exhibiting unit mesh parameters characteristic of the bulk alloy.