960 resultados para MIMO radar
Resumo:
Capacity of current and future high data rate wireless communications depend significantly on how well changes in the wireless channel are predicted and tracked. Generally, this can be estimated by transmitting known symbols. However, this increases overheads if the channel varies over time. Given today’s bandwidth demand and the increased necessity for mobile wireless devices, the contributions of this research are very significant. This study has developed a novel and efficient channel tracking algorithm that can recursively update the channel estimation for wireless broadband communications reducing overheads, therefore increasing the speed of wireless communication systems.
Resumo:
This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.
Resumo:
This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.
Resumo:
Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
The requirement of isolated relays is one of the prime obstacles in utilizing sequential slotted cooperative protocols for Vehicular Ad-hoc Networks (VANET). Significant research advancement has taken place to improve the diversity multiplexing trade-off (DMT) of cooperative protocols in conventional mobile networks without much attention on vehicular ad-hoc networks. We have extended the concept of sequential slotted amplify and forward (SAF) protocols in the context of urban vehicular ad-hoc networks. Multiple Input Multiple Output (MIMO) reception is used at relaying vehicular nodes to isolate the relays effectively. The proposed approach adds a pragmatic value to the sequential slotted cooperative protocols while achieving attractive performance gains in urban VANETs. We have analysed the DMT bounds and the outage probabilities of the proposed scheme. The results suggest that the proposed scheme can achieve an optimal DMT similar to the DMT upper bound of the sequential SAF. Furthermore, the outage performance of the proposed scheme outperforms the SAF protocol by 2.5 dB at a target outage probability of 10-4.
Resumo:
In this paper, a novel 2×2 multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) testbed based on an Analog Devices AD9361 highly integrated radio frequency (RF) agile transceiver was specifically implemented for the purpose of estimating and analyzing MIMO-OFDM channel capacity in vehicle-to-infrastructure (V2I) environments using the 920 MHz industrial, scientific, and medical (ISM) band. We implemented two-dimensional discrete cosine transform-based filtering to reduce the channel estimation errors and show its effectiveness on our measurement results. We have also analyzed the effects of channel estimation error on the MIMO channel capacity by simulation. Three different scenarios of subcarrier spacing were investigated which correspond to IEEE 802.11p, Long-Term Evolution (LTE), and Digital Video Broadcasting Terrestrial (DVB-T)(2k) standards. An extensive MIMO-OFDM V2I channel measurement campaign was performed in a suburban environment. Analysis of the measured MIMO channel capacity results as a function of the transmitter-to-receiver (TX-RX) separation distance up to 250 m shows that the variance of the MIMO channel capacity is larger for the near-range line-of-sight (LOS) scenarios than for the long-range non-LOS cases, using a fixed receiver signal-to-noise ratio (SNR) criterion. We observed that the largest capacity values were achieved at LOS propagation despite the common assumption of a degenerated MIMO channel in LOS. We consider that this is due to the large angular spacing between MIMO subchannels which occurs when the receiver vehicle rooftop antennas pass by the fixed transmitter antennas at close range, causing MIMO subchannels to be orthogonal. In addition, analysis on the effects of different subcarrier spacings on MIMO-OFDM channel capacity showed negligible differences in mean channel capacity for the subcarrier spacing range investigated. Measured channels described in this paper are available on request.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)kslashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
This study evaluates how the advection of precipitation, or wind drift, between the radar volume and ground affects radar measurements of precipitation. Normally precipitation is assumed to fall vertically to the ground from the contributing volume, and thus the radar measurement represents the geographical location immediately below. In this study radar measurements are corrected using hydrometeor trajectories calculated from measured and forecasted winds, and the effect of trajectory-correction on the radar measurements is evaluated. Wind drift statistics for Finland are compiled using sounding data from two weather stations spanning two years. For each sounding, the hydrometeor phase at ground level is estimated and drift distance calculated using different originating level heights. This way the drift statistics are constructed as a function of range from radar and elevation angle. On average, wind drift of 1 km was exceeded at approximately 60 km distance, while drift of 10 km was exceeded at 100 km distance. Trajectories were calculated using model winds in order to produce a trajectory-corrected ground field from radar PPI images. It was found that at the upwind side from the radar the effective measuring area was reduced as some trajectories exited the radar volume scan. In the downwind side areas near the edge of the radar measuring area experience improved precipitation detection. The effect of trajectory-correction is most prominent in instant measurements and diminishes when accumulating over longer time periods. Furthermore, measurements of intensive and small scale precipitation patterns benefit most from wind drift correction. The contribution of wind drift on the uncertainty of estimated Ze (S) - relationship was studied by simulating the effect of different error sources to the uncertainty in the relationship coefficients a and b. The overall uncertainty was assumed to consist of systematic errors of both the radar and the gauge, as well as errors by turbulence at the gauge orifice and by wind drift of precipitation. The focus of the analysis is error associated with wind drift, which was determined by describing the spatial structure of the reflectivity field using spatial autocovariance (or variogram). This spatial structure was then used with calculated drift distances to estimate the variance in radar measurement produced by precipitation drift, relative to the other error sources. It was found that error by wind drift was of similar magnitude with error by turbulence at gauge orifice at all ranges from radar, with systematic errors of the instruments being a minor issue. The correction method presented in the study could be used in radar nowcasting products to improve the estimation of visibility and local precipitation intensities. The method however only considers pure snow, and for operational purposes some improvements are desirable, such as melting layer detection, VPR correction and taking solid state hydrometeor type into account, which would improve the estimation of vertical velocities of the hydrometeors.