230 resultados para MICROPYLAR ENDOSPERM
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although mineral nutrition affects maize (Zea mays L.) yield by controlling starch deposition in kernels, the mechanisms involved are largely unknown. Our objectives were to examine this relationship by nutritionally and genetically altering starch production in the endosperm. Kernels of W64A and two starch-deficient mutants, shrunken-1 and brittle-2, were grown in vitro with varying supplies of N (0-50 mM) or P (0-6 mM) to produce different degrees of endosperm starch production, and the levels of enzyme activities and metabolites associated with carbohydrate and N metabolism were examined. In vitro grown kernels exhibited the expected starch phenotypes, and a minimum level of media N (25 mM) and P (2 mM) was required for optimal growth. However, increasing the availability of N or P could not overcome the genetically induced decrease in starch deposition of the mutants. Nitrogen deficiency enhanced sugar accumulation, but decreased amino acid levels, soluble protein, enzyme activity, starch synthesis, and endosperm dry weight. Phosphorous deficiency also decreased starch production and endosperm dry weight, but with only a minimal effect on the activities of ADP-glucose pyrophosphorylase and alanine transaminase. Genotypic differences in endosperm starch, and the increases induced by N and P supply, Here closely associated with the level of endosperm N, but not endosperm P. Thus, while both N and P are crucial for optimal yield of maize grain, they appear to act by different means, and with different importance in governing starch deposition in the endosperm.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Programmed cell death (PCD) is a widely spread phenomenon among multi-cellular organisms. Without the deletion of cells no longer needed, the organism will not be able to develop in a predicted way. It is now belived that all cells have the capacity to self-destruct and that the survival of the cells is depending on the repression of this suicidal programme. PCD has turned out to show similarities in many different species and there are strong indications that the mechanisms running the programme might, at least in some parts, be evolutionarily conserced. PCD is a generic term for different programmes of cell destruction, such as apoptosis and autophagic PCD. An important tool to determine if a cell is undergoing PCD is the transmitting electron microscope. The aims of my study were to find out if, and in what way, the suspensor and endosperm in Vicia faba (Broad bean), which are short-lived structures, undergoes PCD. The endosperm degradation preceed the suspensor cell death and they differ to some extent ultrastructurally. The cell death occurs in both tissues about 13-14 days after pollination when the embryo proper is mature enough to support itself. It was found that both tissues are committed to autophagic PCD, a cell death characteristic of conspicuous formations of autophagic vacuoles. It was shown by histochemical staining that acid phosphatases are accumulated in these vacuoles but are also present in the cytoplasm. These vacuoles are similar to autophagic vacuoles formed in rat liver cells, indicating that autophagy is a widely spread phenomenon. DNA fragmentation is the first visible sign of PCD in both tissues and it is demonstrated by a labelling technique (TUNEL). In the endosperm nuclei the heterochromatin subsequently appears in the form of a network, while in the suspensor it is more conspicuous, with heterochromatin that forms large electron dense aggregates located close to the nuclear envelope. In the suspensor, the plastids develop into chromoplasts with lycopene crystals at the same time or shortly after DNA fragmentation. This is probably due to the fact that the suspensor plastids function as hormone producing organelles and support the embryo proper with indispensable growth factors. Later the embryo will be able to produce its own growth factors and the synthesis of these, in particular gibberelines, might be suppressed in the suspensor. The precursors can then be used for synthesis of lycopene instead. Both the suspensor and endosperm are going through autophagic PCD, but the process differs in some respects. This is probably due the the different function of the two tissues, and that the signals that trigger the process presumably are different. The embryo proper is probably the source of the death signal affecting the suspensor. The endosperm, which has a different origin and function, might be controlling the death signal within its own cell. The death might in this case be related to the age of the cell.
Resumo:
Reducing duplication in ex-situ collections is complicated and requires good quality genetic markers. This study was conducted to assess the value of endosperm proteins and SSRs for validation of potential duplicates and monitoring intra-accession variability. Fifty durum wheat (Triticum turgidum ssp. durum) accessions grouped in 23 potential duplicates, and previously characterised for 30 agro-morphological traits, were analysed for gliadin and high molecular weight glutenin (HMWG) subunit alleles, total protein, and 24 SSRs, covering a wide genome area. Similarity and dissimilarity matrices were generated based on protein and SSRs alleles. For heterogeneous accessions at gliadins the percent pattern homology (PH) between gliadin patterns and the Nei’s coefficient of genetic identity (I) were computed. Eighteen duplicates identical for proteins showed none or less than 3 unshared SSRs alleles. For heterogeneous accessions PH and I values lower than 80 identified clearly off-types with more than 3 SSRs unshared. Only those biotypes differing in no more than one protein-coding locus were confirmed with SSRs. A good concordance among proteins, morphological traits, and SSR were detected. However, the discrepancy in similarity detected in some cases showed that it is advisable to evaluate redundancy through distinct approaches. The analysis in proteins together with SSRs data are very useful to identify duplicates, biotypes, close related genotypes, and contaminations
Resumo:
We report the characterization of a maize Wee1 homologue and its expression in developing endosperm. Using a 0.8-kb cDNA from an expressed sequence tag project, we isolated a 1.6-kb cDNA (ZmWee1), which encodes a protein of 403 aa with a calculated molecular size of 45.6 kDa. The deduced amino acid sequence shows 50% identity to the protein kinase domain of human Wee1. Overexpression of ZmWee1 in Schizosaccharomyces pombe inhibited cell division and caused the cells to enlarge significantly. Recombinant ZmWee1 obtained from Escherichia coli is able to inhibit the activity of p13suc1-adsorbed cyclin-dependent kinase from maize. ZmWee1 is encoded by a single gene at a locus on the long arm of chromosome 4. RNA gel blots showed the ZmWee1 transcript is about 2.4 kb in length and that its abundance reaches a maximum 15 days after pollination in endosperm tissue. High levels of expression of ZmWee1 at this stage of endosperm development imply that ZmWee1 plays a role in endoreduplication. Our results show that control of cyclin-dependent kinase activity by Wee1 is conserved among eukaryotes, from fungi to animals and plants.
Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis
Resumo:
Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446–450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.
Resumo:
Diploid (2n = 2x = 24) Solanum species with endosperm balance number (EBN) = 1 are sexually isolated from diploid 2EBN species and both tetraploid (2n = 4x = 48, 4EBN) and haploid (2n = 2x = 24, 2EBN) S. tuberosum Group Tuberosum. To sexually overcome these crossing barriers in the diploid species S. commersonii (1EBN), the manipulation of the EBN was accomplished by scaling up and down ploidy levels. Triploid F1 hybrids between an in vitro-doubled clone of S. commersonii (2n = 4x = 48, 2EBN) and diploid 2EBN clones were successfully used in 3x × 4x crosses with S. tuberosum Group Tuberosum, resulting in pentaploid/near pentaploid BC1 progenies. This provided evidence of 2n (3x) egg formation in the triploid female parents. Two selected BC1 pentaploid hybrids were successfully backcrossed both as male and as female parents with S. tuberosum Group Tuberosum. The somatic chromosome number varied greatly among the resulting BC2 progenies, which included hyperaneuploids, but also a number (4.8%) of 48-chromosome plants. The introgression of S. commersonii genomes was confirmed by the presence of S. commersonii-specific randomly amplified polymorphic DNA markers in the BC2 population analyzed. The results clearly demonstrate the feasibility of germplasm introgression from sexually isolated diploid 1EBN species into the 4x (4EBN) gene pool of the cultivated potato using sexual hybridization. Based on the amount and type of genetic variation generated, cumbersomeness, general applicability, costs, and other factors, it would be interesting to compare the approach reported here with other in vitro or in vivo, direct or indirect, approaches previously reported.