949 resultados para METABOLIC-REGULATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Acute kidney injury (AKI) requiring dialysis in critically ill patients is associated with an in-hospital mortality rate of 50-80 %. Extended daily hemodialysis (EHD) and high volume peritoneal dialysis (HVPD) have emerged as alternative modalities. Methods: A double-center, randomized, controlled trial was conducted comparing EHD versus HVPD for the treatment for AKI in the intensive care unit (ICU). Four hundred and seven patients were randomized and 143 patients were analyzed. Principal outcome measure was hospital mortality, and secondary end points were recovery of renal function and metabolic and fluid control. Results: There was no difference between the two groups in relation to median ICU stay [11 (5.7-20) vs. 9 (5.7-19)], recovery of kidney function (26.9 vs. 29.6 %, p = 0.11), need for chronic dialysis (9.7 vs. 6.5 %, p = 0.23), and hospital mortality (63.4 vs. 63.9 %, p = 0.94). The groups were different in metabolic and fluid control. Blood urea nitrogen (BUN), creatinine, and bicarbonate levels were stabilized faster in EHD group than in HVPD group. Delivered Kt/V and ultrafiltration were higher in EHD group. Despite randomization, there were significant differences between the groups in some covariates, including age, pre-dialysis BUN, and creatinine levels, biased in favor of the EHD. Using logistic regression to adjust for the imbalances in group assignment, the odds of death associated with HVPD was 1.4 (95 % CI 0.7-2.4, p = 0.19). A detailed investigation of the randomization process failed to explain the marked differences in patient assignment. Conclusions: Despite faster metabolic control and higher dialysis dose and ultrafiltration with EHD, this study provides no evidence of a survival benefit of EHD compared with HVPD. The limitations of this study were that the results were not presented according to the intention to treat and it did not control other supportive management strategies as nutrition support and timing of dialysis initiation that might influence outcomes in AKI. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Metabolic predictors and the atherogenicity of oxidized LDL (oxLDL) and the specific antibodies against oxLDL (oxLDL Ab) are unclear and controversial. Methods: In 107 adults without atherosclerotic manifestations, we measured oxLDL and oxLDL Ab, and also the activities of CETP. PLTP, lipases and the carotid intima-media thickness (cIMT). Comparisons were performed for the studied parameters between the lowest and the highest tertile of oxLDL and oxLDL Ab, and the relationships between studied variables were evaluated. Results: Subjects with higher oxLDL Ab present reduced hepatic lipase activity and borderline increased cIMT. In the highest oxLDL tertile, besides the higher levels of total cholesterol, LDL-C and apoB100, we found reduced CETP activity and higher cIMT. A significant correlation between oxLDL Ab and cIMT, independent of oxLDL, and a borderline correlation between oxLDL and cIMT independent of oxLDL Ab were found. In the multivariate analysis, apoAl was a significant predictor of oxLDL Ab, in contrast to regulation of oxLDL by apoB100, PLTP and inverse of CETP. Conclusions: In adults without atherosclerotic disease, the metabolic regulation and carotid atherosclerosis of oxLDLAb and oxLDL groups, characterized a dual trait in oxLDL Ab, as a contributor to carotid atherosclerosis, much less so than oxidized LDL, and with a modest atheroprotective role. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1=early lactation up to 12 wk postpartum, 2=feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3=subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hyperketonemia interferes with the metabolic regulation in dairy cows. It is assumed that metabolic and endocrine changes during hyperketonemia also affect metabolic adaptations during inflammatory processes. We therefore studied systemic and local intramammary effects of elevated plasma β-hydroxybutyrate (BHBA) before and during the response to an intramammary lipopolysaccharide (LPS) challenge. Thirteen dairy cows received intravenously either a Na-DL-β-OH-butyrate infusion (n = 5) to achieve a constant plasma BHBA concentration (1.7 ± 0.1 mmol/L), with adjustments of the infusion rates made based on immediate measurements of plasma BHBA every 15 min, or an infusion with a 0.9% NaCl solution (control; n = 8) for 56 h. Infusions started at 0900 h on d 1 and continued until 1700 h 2 d later. Two udder quarters were challenged with 200 μg of Escherichia coli LPS and 2 udder quarters were treated with 0.9% saline solution as control quarters at 48 h after the start of infusion. Blood samples were taken at 1 wk and 2h before the start of infusions as reference samples and hourly during the infusion. Mammary gland biopsies were taken 1 wk before, and 48 and 56 h (8h after LPS challenge) after the start of infusions. The mRNA abundance of key factors related to BHBA and fatty acid metabolism, and glucose transporters was determined in mammary tissue biopsies. Blood samples were analyzed for plasma glucose, BHBA, nonesterified fatty acid, urea, insulin, glucagon, and cortisol concentrations. Differences were not different for effects of BHBA infusion on the mRNA abundance of any of the measured target genes in the mammary gland before LPS challenge. Intramammary LPS challenge increased plasma glucose, cortisol, glucagon, and insulin concentrations in both groups but increases in plasma glucose and glucagon concentration were less pronounced in the Na-DL-β-OH-butyrate infusion group than in controls. In response to LPS challenge, plasma BHBA concentration decreased in controls and decreased also slightly in the BHBA-infused animals because the BHBA concentration could not be fully maintained despite a rapid increase in BHBA infusion rate. The change in mRNA abundance of citrate synthase in LPS quarters was significant between the 2 treatment groups. The results indicate that elevated circulating BHBA concentration inhibits gluconeogenesis before and during immune response to LPS challenge, likely because BHBA can replace glucose as an energy source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms [1]. Herein included is the prominent example of gene silencing caused by micro RNAs (miRNAs) and small interfering RNAs (siRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of RNAs among the well-studied ncRNAs that target the ribosome itself [2,3]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. Recent studies show the presence of small regulatory RNAs (sRNAs) in archaea which are involved in many biological processes including stress response and metabolic regulation [4]. To date the biological function and the targets of these archaeal sRNAs are only described for a few examples. There are reports of sRNAs binding to the 5’ as well as to the 3’ of mRNAs [5,6]. In addition to these findings, a tRNA derived fragment (tRF) of Valine tRNA was found in a genomic screen of RNAs associated with the ribosome in H. volcanii in our laboratory [3]. This Valine tRF seems to be processed in a stress-dependent manner and showed in vitro binding to the ribosome and inhibited in vitro translation. These results showed that Valine tRF is capable to regulate translation in H. volcanii by targeting the ribosome. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression patterns in response to stress conditions. To investigate the biological relevance of some of the ribosome-associated ncRNA candidates, knock-out and phenotypic characterization studies are done. The genomic knock out of a hypothetical ORF (198nt), where one putative rancRNA candidate (46nt) named IG33 was detected in the library at the beginning of the ORF, showed interesting growth phenotype under specific stress conditions. Furthermore a strain with an introduced start to stop codon mutation in this hypothetical ORF still shows the same phenotype indicating that rather the missing protein than the missing sRNA causes this growth phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ATP-sensitive potassium (KATP) channels in the pancreatic β cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The β cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ATP-sensitive potassium channel (K-ATP channel) plays a key role in insulin secretion from pancreatic β-cells. It is closed by glucose metabolism, which stimulates secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and MgADP concentration, which inhibit and potentiate channel activity, respectively. The β-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. The site at which ATP mediates channel inhibition lies on Kir6.2, while the potentiatory action of MgADP involves the nucleotide-binding domains of SUR1. K-ATP channels are also activated by MgGTP and MgGDP. Furthermore, both nucleotides support the stimulatory actions of diazoxide. It is not known, however, whether guanine nucleotides mediate their effects by direct interaction with one or more of the K-ATP channel subunits or indirectly via a GTP-binding protein. We used a truncated form of Kir6.2, which expresses independently of SUR1, to show that GTP blocks K-ATP currents by interaction with Kir6.2 and that the potentiatory effects of GTP are endowed by SUR1. We also showed that mutation of the lysine residue in the Walker A motif of either the first (K719A) or second (K1384M) nucleotide-binding domain of SUR1 abolished both the potentiatory effects of GTP and GDP on K-ATP currents and their ability to support stimulation by diazoxide. This argues that the stimulatory effects of guanine nucleotides require the presence of both Walker A lysines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the control of carbon fixation and nitrogen assimilation has been studied in detail, relatively little is known about the regulation of carbon and nitrogen flow into amino acids. In this paper we report our study of the metabolic regulation of expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase (AK/HSD) gene, which encodes two linked key enzymes in the biosynthetic pathway of aspartate family amino acids. Northern blot analyses, as well as expression of chimeric AK/HSD-β-glucuronidase constructs, have shown that the expression of this gene is regulated by the photosynthesis-related metabolites sucrose and phosphate but not by nitrogenous compounds. In addition, analysis of AK/HSD promoter deletions suggested that a CTTGACTCTA sequence, resembling the binding site for the yeast GCN4 transcription factor, is likely to play a functional role in the expression of this gene. Nevertheless, longer promoter fragments, lacking the GCN4-like element, were still able to confer sugar inducibility, implying that the metabolic regulation of this gene is apparently obtained by multiple and redundant promoter sequences. The present and previous studies suggest that the conversion of aspartate into either the storage amino acid asparagine or aspartate family amino acids is subject to a coordinated, reciprocal metabolic control, and this biochemical branch point is a part of a larger, coordinated regulatory mechanism of nitrogen and carbon storage and utilization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ubiquitin-activating enzyme, E1, is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 exists as two isoforms in human cells which are separable by electrophoresis. These isoforms migrate with apparent molecular sizes of 110 kDa and 117 kDa in SDS/polyacrylamide gels. Immunoprecipitation of E1 from lysates of HeLa cells metabolically labeled with [32P]phosphate indicated the presence of a phosphorylated form of E1 which migrates at 117 kDa. Phospho amino acid analysis identified serine as the phosphorylated residue in E1. Phosphorylated E1 was also detected in normal and transformed cells from another human cell line. Phosphatase-catalyzed dephosphorylation of E1 in vitro did not eliminate the 117-kDa E1 isoform detected by Coomassie staining after SDS/polyacrylamide gel electrophoresis, thereby demonstrating that phosphorylation is not the sole structural feature differentiating the isoforms of E1. These observations suggest new hypotheses concerning mechanisms of metabolic regulation of the ubiquitin conjugation pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animals that fast during breeding and/or development, such as phocids, must regulate energy balance carefully to maximize reproductive fitness and survival probability. Adiponectin, produced by adipose tissue, contributes to metabolic regulation by modulating sensitivity to insulin, increasing fatty acid oxidation by liver and muscle, and promoting adipogenesis and lipid storage in fat tissue. We tested the hypotheses that (1) circulating adiponectin, insulin, or relative adiponectin gene expression is related to nutritional state, body mass, and mass gain in wild gray seal pups; (2) plasma adiponectin or insulin is related to maternal lactation duration, body mass, percentage milk fat, or free fatty acid (FFA) concentration; and (3) plasma adiponectin and insulin are correlated with circulating FFA in females and pups. In pups, plasma adiponectin decreased during suckling (linear mixed-effects model [LME]: T = 4.49; P < 0.001) and the early postweaning fast (LME: T = 3.39; P = 0.004). In contrast, their blubber adiponectin gene expression was higher during the early postweaning fast than early in suckling (LME: T = 2.11; P = 0.046). Insulin levels were significantly higher in early (LME: T = 3.52; P = 0.004) and late (LME: T = 6.99; P < 0.001) suckling than in fasting and, given the effect of nutritional state, were also positively related to body mass (LME: T = 3.58; P = 0.004). Adiponectin and insulin levels did not change during lactation and were unrelated to milk FFA or percentage milk fat in adult females. Our data suggest that adiponectin, in conjunction with insulin, may facilitate fat storage in seals and is likely to be particularly important in the development of blubber reserves in pups.