973 resultados para MERCURY-VAPOR
Resumo:
In this work a simple and sensitive procedure to extract organic mercury from water and sediment samples, using methylene chloride in acidic media followed by CVAFS quantification has been developed. The method was evaluated for possible interferents, using different inorganic mercury species and humic acid, no effects being observed. The detection limit for organic mercury was 160 pg and 396 pg for water and sediment samples respectively. The accuracy of the method was evaluated using a certified reference material of methylmercury (BCR-580, estuarine sediment). Recovery tests using methylmercury as surrogate spiked with 1.0 up to 30.0 ng L-1 ranged from 90 up to 109% for water samples, whereas for sediments, recoveries ranged from 57 up to 97%.
Resumo:
Mercury is a toxic metal used in a variety of substances over the course history. One of its more dubious uses is in dental amalgam restorations. It is possible to measure very small concentrations of this metal in the urine of exposed subjects by the cold vapor atomic absorption technique. The present work features the validation as an essential tool to confirm the suitability of the analytical method chosen to accomplish such determination. An initial analysis will be carried out in order to evaluate the environmental and occupational levels of exposure to mercury in 39 members of the auxiliary dental staff at public consulting rooms in the city of Araguaína (TO).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermogravimetry, Differential Scanning Calorimetry and other analytical techniques (Energy Dispersive X-ray Analysis; Scanning Electron Microscopy; Mapping Surface; X-ray Diffraction; Inductively Coupled Plasma Atomic Emission Spectroscopy and Cold Vapor Generation Atomic Absorption Spectroscopy) have been used to study the reaction of mercury with platinum foils. The results suggest that, when heated, the electrodeposited Hg film reacts with Pt to form intermetallic compounds each having a different stability, indicated by at least three mass loss steps. Intermetallic compounds such as PtHg4, PtHg and PtHg2 were characterized by XRD. These intermetallic compounds were the main products formed on the surface of the samples after partial removal of bulk mercury via thermal desorption. The Pt(Hg) solid solution formation caused great surface instability, attributed to the atomic size factor between Hg and Pt, facilitating the acid solution's attack to the surface.
Resumo:
A flow-injection system for multielemental analysis with a mercury(II) preconcentration step using a resin Chelite-S(R)(Serva Feinbiochemica Heidelberg, Part No. 41709) packed minicolumn by inductively coupled plasma atomic emission spectroscopy is described. A mercury reductive elution procedure with a mixture of SnCl2/HCl was used, which allows use of 6 mol/L HCl solution instead of concentrated hydrochoric acid. The main parameters related to ICP operation, such as radio frequency power (950-1750 W), auxiliary argon flow (0.0-1.5 L/min) and spray chamber nebulizer pressure (15-35 psi), were studied. Optimization of the FIA system was reached by defining the best eluent carrier stream (1.4-2.8 mL/min), Hgdegrees carrier stream (10-40 mL min(-1)), loading time (0.5-4.0 min), sample flow rate (1.25-10.0 mL/min), temperature of reactor gas liquid separator (GLS) (25-75 degreesC) and eluent volume (50-350 muL). Throughput is around 30 samples per hour for analytical solutions within the range 50-2500 ng Hg(II)/L. Results from certified material showed good precision (RSD < 3%, n = 12) and no statistical difference was observed for real samples analyzed by AAS and by the proposed system.
Resumo:
Thermogravimetry (TG) energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), mapping surface, X-ray diffraction (XRD), inductively coupled plasma emission spectroscopy and atomic spectroscopy with cold vapor generation have been used to study the reaction of mercury with platinum-rhodium (Pt-Rh) alloy. The results suggest that, the electrodeposited Hg film reacts with Pt-Rh to form intermetallic compounds of different stability, when heated indicated by at least four weight loss steps. Intermetallic compounds as PtHg4 and PtHg2 was characterized by XRD. These intermetallic compound are the main product presents on the surface of the samples after remotion of the bulk mercury via thermal desorption techniques. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F-1 > 100 kDa and F-2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F-5: 5-10 kDa, F-6: < 5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F-5 > F-2 > > F-1 > F-3 > F-4 > > F-6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The evolution of elemental Hg from its environmental compounds has already been supposed to be an important process within the global mercury cycle. The present study characterizes the abiotic reduction of Hg(II) ions by typical river humic substances (HS) conventionally pre-isolated by the adsorbent XAD 8 from the Rio Negro near Manaus, Brazil. For the investigation of this reduction process a special reaction and Hg(0) trapping unit combined with cold-vapor atomic absorption spectrometry (CVAAS) was developed. Preconcentration of traces of mercury(II), if required, was obtained by a home-made FIA system using microcolumns filled with the Hg(II)-selective collector CheliteS(R) (Serva Company). The effect of environmentally relevant parameters such as the pH value, the Hg(II)/HS ratio and the HS concentration on the I-IE;(II) reduction process was studied as a function of the time. The Hg(0) production was highest at pH 8.0 and in the case of decreasing HS amounts (0.5 mg) when about 65% of initially 1.0 mug Hg(H) was reduced within 50 h. Moreover, the reduction efficiency of HS towards HE;(II) strongly depended on the HS concentration but hardly on the Hg(II)/HS ratio. The reduction kinetics followed a relatively slow two-step first-order mechanism with formal rate constants of about 0.1 and 0.02 h(-1), respectively. Based on these findings the possible relevance of the abiotic evolution of mercury in humic-rich aquatic environments is considered. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Thermogravimetry (TG) and other analysis techniques (EDX, SEM, Mapping surface, X-ray diffraction, inductively coupled argon plasma emission spectroscopy and atomic spectrometry with cold vapor generation) were used to study the reaction of Hg with Rh. The results permitted the suggestion that, when subjected to heat, an electrodeposited Hg film reacts with Rh to form intermetallic products with different stabilities, as indicated by at least three mass loss steps. In the first step, between room temperature and 160°C, only the bulk Hg is removed. From this temperature up to about 175°C, the mass loss can be attributed to the desorption of a film of metallic Hg. The last step, from 175 to 240°C, can be ascribed to the removal of Hg from a thin dark film of RhHg2.
Resumo:
O emprego de mercúrio metálico nos processos de extração do ouro libera toneladas de mercúrio ao meio ambiente, provocando um aumento considerável nas concentrações presentes. Com a finalidade de prevenir a exposição humana a concentrações excessivas, o que poderá resultar em graves episódios de intoxicação mercurial, bem como avaliar a possibilidade de sedimentos tornarem-se fontes potenciais de contaminação para os seres vivos, é de fundamental importância a monitorização do mercúrio em diversos compartimentos ambientais. Efetuou-se a padronização de uma metodologia analítica para determinação de mercúrio total em amostras de água, sólidos em suspensão e sedimentos de corpos aquáticos para monitorização ambiental do xenobiótico. Posteriormente, foram analisadas amostras oriundas de regiões garimpeiras, com vistas a avaliar o desempenho do método em amostras reais e efetuar levantamento preliminar sobre a contaminação mercurial na área de estudo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)