418 resultados para MCM
Resumo:
MCM-22 zeolite with mid-strong acidity and openings of 10-membered ring channels may obtain a high catalytic activity and selectivity for alkylation of toluene with methanol. The acidic sites, for catalyzing alkylation of toluene with methanol, are weaker than that for catalyzing toluene disproportionation. Compared with silicon as a modifier, modification of MCM-22 with La(NO3)(3) is a promising way to improve the catalytic selectivity of para-xylene. In addition, the experimental results also clearly indicate the characteristics of MCM-22 structure consisting of large intracrystalline cages, some of which may locate on surface of MCM-22. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive study on physical and chemical properties of Mo/MCM-22 bifunctional catalysts has been made by using combined analytic and spectroscopic techniques, such as adsorption, elemental analysis, and Xe-129 and P-31 NMR of adsorbed trialkylphosphine oxide probe molecules. Samples prepared by the impregnation method with Mo loadings ranging from 2-10 wt.% have been examined and the results are compared with that obtained from samples prepared by mechanical mixing using MoO3 or Mo2C as agents. Sample calcination treatment is essential in achieving a well-dispersed metal species in Mo/MCM-22. It was found that, upon initial incorporation, the Mo species tend to inactivate both Bronsted and Lewis sites locate predominantly in the supercages rather than the 10-membered ring channels of MCM-22. However, as the Mo loading exceeds 6 wt.%, the excessive Mo species tend to migrate toward extracrystalline surfaces of the catalyst. A consistent decrease in concentrations of acid sites with increasing Mo loading < 6 wt.% was found, especially for those with higher acid strengths. Upon loading of Mo > 6 wt.%, further decreases in both Bronsted and Lewis acidities were observed. These results provide crucial supports for interpreting the peculiar behaviors previously observed during the conversion of methane to benzene over Mo/MCM-22 catalyst under non-oxidative conditions, in which an optimal performance was achieved with a Mo loading of 6 wt.%. The effects of Mo incorporation on porosity and acidity features of the catalyst are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
The density functional theory has been used to study the isomorphously substituted MCM-22 zeolite for the first time. The effect of the basis sets on the calculation results is discussed in details. Data of several index properties for characterizing the relative acidity of T-MCM-22 (T = B, Al, Ga, and Fe), including proton affinity, bond length and bond angle, OH stretching frequency, and charge on the acidic proton, show that the acidity of T-MCM-22 increases in the sequence of B-MCM-22 < Fe-MCM-22 < Ga-MCM-22 < Al-MCM-22. After making a correction, the calculated OH stretching frequencies for Al-MCM-22 and Fe-MCM-22 show a reasonable agreement with the experimental data. On the basis of an equilibrium structure of the B-MCM-22 zeolite, the effect of the B element in the synthesis of the Ti-MCM-22 is also discussed. The adding of the B element during the synthesis of the Ti-MCM-22 can decrease greatly the Ti substitution energy because of the forming of a structure quite similar to the terminal silanol group. The results can provide some constructively information for zeolite synthesis.
Resumo:
A comparison of methane dehydroaromatization (MDA) on 6Mo/MCM-22 and 6Mo/ZSM-5 was carried out using a gas mixture of 90%CH4, 2%CO2 and 8%Ar as the feed. The results indicate that the stability of 6Mo/MCM-22 is better than that of 6Mo/ZSM-5. A detailed study reveals that the ability for coke accommodation and the retention of the shape selectivity for aromatics formation is responsible for the stability of a MDA catalyst.
The role of coke in the deactivation of Mo/MCM-22 catalyst for methane dehydroaromatization with CO2
Resumo:
The effect of space velocity on reaction performance and coke deposition over 6Mo/MCM-22 catalyst in methane dehydro-aromatization (MDA) with CO2 were studied. The characterization of catalysts reacted at different space velocity after the same amount of methane feed by TG, TPO and Benzene/NH3-TPD techniques suggested that the inert coke maybe responsible for the deactivation of catalyst because of its blockage effect for pore system.