930 resultados para MC-RR
Resumo:
This paper studied the seasonal changes of two common microcystins (MCs), MC-RR and -LR, in the commercially important mussel Corbicula fluminea in Lake Chaohu, where there occurred dense cyanobacteria. Occasional measurements were also made for MC in the mussel Arconaia lanceolat, the oligochaete Limnodilus hoffineisteri and the insect larva Chironomus sp. Mean MC of C. fluminea was much higher in hepatopancreas than in intestine and foot. Our study is the first to report accumulation of MCs in oligochaetes and aquatic insect larvae. The hi-h contents of MCs in the insect larvae suggest a great possibility for the transfer of MCs to benthos-feeding omnivores like common carp. According to the provisional standard by the WHO, 28.6% of the collected C. fluminea were harmful for human consumption, assuming a daily consumption of 300 by a person. It is recommended that edible mussels should not be collected for human consumption during toxic cyanobacterial blooms in Lake Chaohu.
Resumo:
An acute toxicity experiment was conducted by intraperitoneal injection with a sublethal dose of extracted microcystins (MCs), 50 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight (BW), to examine tissue distribution and depuration of MCs in crucian carp (Carassius carassius). Liver to body weight ratio increased at 3, 12, 24, and 48 h postinjection compared with that at 0 h (p < 0.05). MC concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, 48, and 168 h postinjection using liquid chromatography coupled with mass spectrometry (LC-MS). The highest concentration of MCs (MC-RR + MC-LR) was found in blood, 2 -270 ng/g dry weight (DW), followed by heart (3 -100 ng/g DW) and kidney (13 -88 ng/g DW). MC levels were relatively low in liver, gonad, intestine, spleen, and brain. MC contents in gills, gallbladder, and muscle were below the limit of detection. Significant negative correlation was present between MC-RR concentration in blood and that in kidney, confirming that blood was important in the transportation of MC-RR to kidney for excretion. Rapid accumulation and slow degradation of MCs were observed in gonad, liver, intestine, spleen, and brain. Only 0.07% of injected MCs were detected in liver. The recovery of MCs in liver of crucian carp seemed to be dose dependent.
Resumo:
Gel filtration chromatography, ultra-filtration, and solid-phase extraction silica gel clean-up were evaluated for their ability to remove microcystins selectively from extracts of cyanobacteria Spirulina samples after using the reversed-phase octadecylsilyl ODS cartridge for subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The reversed-phase ODS cartridge/silica gel combination were effective and the optimal wash and elution conditions were: H2O (wash), 20% methanol in water (wash), and 90% methanol in water (elution) for the reversed-phase ODS cartridge, followed by 80% methanol in water elution in the silica gel cartridge. The presence of microcystins in 36 kinds of cyanobacteria Spirulina health food samples obtained from various retail outlets in China were detected by LC-MS/MS, and 34 samples (94%) contained microcystins ranging from 2 to 163 ng g(-1) (mean=1427 ng g(-1)), which were significantly lower than microcystins present in blue green alga products previously reported. MC-RR-which contains two molecules of arginine (R)-(in 94.4% samples) was the predominant microcystin, followed by MC-LR-where L is leucine-(30.6%) and MC-YR-where Y is tyrose-(27.8%). The possible potential health risks from chronic exposure to microcystins from contaminated cyanobacteria Spirulina health food should not be ignored, even if the toxin concentrations were low. The method presented herein is proposed to detect microcystins present in commercial cyanobacteria Spirulina samples.
Resumo:
Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.
Resumo:
An acute toxicity experiment was conducted to examine the distribution and depuration of microcystins (MCS) in crucian carp (Carassius aurutus) tissues. Fish were injected intraperitoneally with extracted MCs at a dose of 200 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight. Microcystin concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, and 48 h postinjection using liquid chromatography coupled with mass spectrometry. Microcystins were detected mainly in blood (3.99% of injected dose at 1 h), liver (1.60% at I h), gonad (1.49% at 3 h), and kidney (0.14% at 48 h). Other tissues, such as the heart, gill, gallbladder, intestine, spleen, brain, and muscle, contained less than 0.1% of the injected MCs. The highest concentration of MCs was found in blood (526-3,753 ng/g dry wt), followed by liver (103-1,656 ng/g dry wt) and kidney (279-1,592 ng/g dry wt). No MC-LR was detectable in intestine, spleen, kidney, brain, and muscle, whereas MC-RR was found in all examined fish tissues, which might result from organ specificity of different MCs. Clearance of MC-RR in brain tissue was slow. In kidney, the MC-RR content was negatively correlated with that in blood, suggesting that blood was important in the transportation of MC-RR to kidney for excretion.
Resumo:
Up to now, in vivo studies on the toxic effects of microcystins (MCs) on the ultrastructures of fish liver have been very limited. The phytoplanktivorous silver carp was injected i.p. with extracted hepatotoxic microcystins (mainly MC-RR and -LR) at a dose of 1000 mu g MC-LReq. kg(-1) body weight, showing a time-dependent ultrastructural change in liver as well as significant increases in enzyme activity of plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH). We observed for the first time the occurrence of a large amount of activated secondary lysosomes, which might be an adaptive mechanism to eliminate or lessen cell damage caused by MCs through lysosome activation. Quantitative and qualitative determinations of MCs in the liver were conducted by HPLC and LC-MS2, respectively. MCs concentration in the liver reached the maximum (114.20 mu g g(-1) dry weight) after 3 h post-injection, and then rapidly dropped to 7.57 mu g g(-1) dry weight at 48 h, indicating a deputation of 99% accumulated MC-LReq. On the other hand, a decrease trend in glutathione (GSH) concentration was observed in the liver of silver carp while the activity of glutathione S-transferase (GST) increased significantly after injection. The high tolerance of silver carp to MCs might be due to the high basic GSH level in their liver, and/or an increased GSH synthesis. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The distribution and dynamics of microcystins in various organs of the phytoplanktivorous bighead carp were studied monthly in Lake Taihu, which is dominated by toxic cyanobacteria. There was a good agreement between LC-MS and HPLC-UV determinations. Average recoveries of spiked fish samples were 63% for MC-RR and 71% for MC-LR. The highest MC contents in intestine, liver, kidney and spleen were 85.67, 2.83, 1.70 and 1.57 mu g g(-1) DW, respectively. MCs were much higher in mid-gut walls (1.22 mu g g(-1) DW) than in hind- and fore-gut walls (0.31 and 0.18 mu g g(-1) DW, respectively), suggesting the importance of mid-gut wall as major site for MC absorption. A cysteine conjugate of MC-LR was detected frequently in kidney. Among the muscle samples analyzed, 25% were above the provisional tolerable daily intake level by WHO. Bighead is strongly resistant to microcystins and can be used as biomanipulation fish to counteract cyanotoxin contamination in eutrophic waters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we describe the seasonal dynamics of three common microcystins (MCs MC-RR, MC-YR, and MC-LR) in the whole body, hepatopancreas, intestine, gonad, foot, remaining tissue, and offspring of a freshwater snail, Bellamya aeruginosa, from Gonghu Bay of Lake Taihu, China, where dense toxic Microcystis blooms occur in the warm seasons. Microcystins were determined by liquid chromatography electrospray ionization mass spectrum. Microcystin (MC-RR + MC-YR + MC-LR) content of the offspring and gonad showed high positive correlation, indicating that microcystins could transfer from adult females to their young with physiological connection. This study is the first to report the presence of microcystins in the offspring of the adult snail. The majority of the toxins were present in the intestine (53.6%) and hepatopancreas (29.9%), whereas other tissues contained only 16.5%. If intestines are excluded, up to 64.3% of the toxin burden was allocated in the hepatopancreas. The microcystin content in the intestine, hepatopancreas, and gonad were correlated with the biomass of Microcystis and intracellular and extracellular toxins. Of the analyzed foot samples, 18.2% were above the tolerable daily microcystin intake recommended by the World Health Organization (WHO) for human consumption. This result indicates that public health warnings regarding human ingestion of snails from Taihu Lake are warranted. In addition, further studies are needed to evaluate the occurrence by Microcystis in relation to spatial and temporal changes in water quality.
Resumo:
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July-September in 2003-2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river-connected lakes (SL) was nearly 33 times that in permanently river-connected lakes (RL), and more than six times that in city lakes (NC) and non-urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 mu g L-1) was detected in Dianshan Lake. 3. MC-RR and MC-LR were the primary toxin variants in our data. MC-RR, MC-YR and MC-LR were significantly correlated with Ch1 a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus UP) and NH4+ with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO3- + NO2- were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochernical factors.
Resumo:
The phytoplanktivorous silver carp is an important biomanipulation fish to control cyanobacterial blooms and is also a food fish with the greatest production in China. The accumulation of the hepatotoxic microcystins (MCs) determined by LC-MS in various organs of silver carp was studied monthly in Lake Taihu dominated by toxic Microcystis aeruginosa. Average recoveries of spiked fish samples were 78% for MC-RR and 81% for MC-LR. The highest content of MCs was found in the intestine (97.48 mu g g(-1) DW), followed by liver (6.84 mu g g(-1) DW), kidney (4.8 8 mu g g(-1) DW) and blood (1.54 mu g g(-1) DW), and the annual mean MC content was in the order of intestine > liver > kidney > blood > muscle > spleen > gallbladder > gill. Silver carp could effectively ingest toxic Microcystis cells (up to 84.4% of total phytoplankton in gut contents), but showed fast growth (from 141 g to 1759 g in I year in mean weight). Silver carp accumulated less microcystins in liver than other animals in the same site or other fish from different water bodies at similar level of toxin ingestion. There was possible inhibition of the transportation of the most toxic MC-LR across the gutwall. Muscle of silver carp in Lake Taihu should not be consumed during period of dense Microcystis blooms while viscera were risky for consumption in more months. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the present paper, sorption, persistence, and leaching behavior of three microcystin variants in Chinese agriculture soils were examined. Based on this study, the values of capacity factor and slope for three MCs variants in three soils ranged from 0.69 to 6.00, and 1.01 to 1.54, respectively. The adsorption of MCs in the soils decreased in the following order: RR > Dha(7) LR > LR. Furthermore, for each MC variant in the three soils, the adsorption rate in the soils decreased in the following order: soil A > soil C > soil B. The calculated half-time ranged between 7.9 and 17.8 days for MC-RR, 6.0-17.1 days for MC-LR, and 7.1-10.2 days for MC-Dha(7) LR. Results from leaching experiments demonstrated that recoveries of toxins in leachates ranged from 0-16.7% for RR, 73.2-88.9% for LR, and 8.9-73.1% for Dha 7 LR. The GUS value ranged from 1.48 to 2.06 for RR, 1.82-2.88 for LR, and 1.76-2.09 for Dha(7) LR. Results demonstrated the use of cyanobacterial collections as plant fertilizer is likely to be unsafe in soils. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Phytoplanktivorous bighead carp were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 200 and 500 MC-LReq. mu g kg(-1) bw, and the changes in extractable MCs in liver and in the ultrastructure of hepatocytes were studied at 1, 3, 12, 24 and 48 h after injection. Quantitative and qualitative determinations of MCs in the liver were conducted by HPLC and LC-MS, respectively. MC concentration in the liver reached the maxima at 12 It (2.89 mu g MCs g(-1) dry weight at the lower dose) or at 3 h (5.43 mu g MCs g(-1) dry weight at the higher dose) post-injection, followed by sharp declines afterwards, whereas the ultrastructural changes of hepatocytes in both dose groups suggest progressive increases in severity toward the directions of apoptosis and necrosis from I to 24 h, respectively. There were two new findings in fish: widening of intercellular spaces was among the early ultrastructural changes induced by MCs and ultrastructural recovery of hepatocytes was evident at 48 h post-injection in both dose groups. Both the present and previous studies suggest that with in vivo or in vitro exposure to microcystins, hepatocyte damage in fish tends to proceed toward the direction of apoptosis at lower MC concentrations but toward the direction of necrosis at high MC concentrations. The temporal dynamics of MCs in the liver suggest that bighead carp may have a mechanism to degrade or bind MC-LR actively after it enters the blood system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A cyanobacterial strain, which produced high content of microcystin-LR (MC-LR) but no rnicrocystin-RR (MC-RR), was isolated from the hypertrophic Dianchi Lake in China and identified as Microcystis aeruginosa DC-1. Effects of nitrogen containing chemicals and trace elements on the growth and the production of MC-LR by this strain were Studied. In the presence of bicine, compared with urea and ammonium, nitrate greatly promoted the growth and the production of MC-LR. However, leucine and arginine, which were the constitutional components in the molecular structure of MC-LR or RR, inhibited the production of MC-LR. Iron and silicon up to 10mg/L had little effects on the growth of M. aeruginosa DC-1, but the production of MC-LR was apparently enhanced. Under all conditions studied here, only MC-LR but no RR was detected within the cells of M. aeruginosa DC-1. Thus, chemical forms of nitrogen, rather than the usually concerned the total nitrogen, Lind trace elements played important roles in the production of MC toxins during cyanobacterial blooms.
Resumo:
We report the results of a synoptic survey at 14 sites across the north of Ireland undertaken to determine the occurrence of cyanobacteria and their constituent microcystin cyanotoxins. Seven microcystin toxins were tested for, and five of which were found, with MC-LR, MC-RR, and MC-YR being the most prevalent. Gomphosphaeria spp and Microcystis aeruginosa were the most dominant cyanobacterial species encountered. Together with Aphanizomenon flos-aquae, these were the cyanobacteria associated with the highest microcystin concentrations. The occurrence of several microcystin toxins indicates that there may potentially be more than one cyanobacteria species producing microcystins at many sites. Total microcystin concentrations varied over three orders of magnitude dividing the sites into two groups of high (>1000 ngMC/μgChla, six sites) or low toxicity (<200 ngMC/μgChla, eight sites). © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.
Resumo:
A highly sensitive broad specificity monoclonal antibody was produced and characterised for microcystin detection through the development of a rapid surface plasmon resonance (SPR) optical biosensor based immunoassay. The antibody displayed the following cross-reactivity: MC-LR 100%; MC-RR 108%; MC-YR 68%; MC-LA 69%; MC-LW 71%; MC-LF 68%; and Nodularin 94%. Microcystin-LR was covalently attached to a CM5 chip and with the monoclonal antibody was employed in a competitive 4min injection assay to detect total microcystins in water samples below the WHO recommended limit (1µg/L). A 'total microcystin' level was determined by measuring free and intracellular concentrations in cyanobacterial culture samples as this toxin is an endotoxin. Glass bead beating was used to lyse the cells as a rapid extraction procedure. This method was validated according to European Commission Decision 96/23/EC criteria. The method was proven to measure intracellular microcystin levels, the main source of the toxin, which often goes undetected by other analytical procedures and is advantageous in that it can be used for the monitoring of blooms to provide an early warning of toxicity. It was shown to be repeatable and reproducible, with recoveries from spiked samples ranging from 74 to 123%, and had % CVs below 10% for intra-assay analysis and 15% for inter-assay analysis. The detection capability of the assay was calculated as 0.5ng/mL for extracellular toxins and 0.05ng/mL for intracellular microcystins. A comparison of the SPR method with LC-MS/MS was achieved by testing six Microcystis aeruginosa cultures and this study yielded a correlation R(2) value of 0.9989.