981 resultados para MAST CELL TUMOUR
Resumo:
Introduction: Giant cell tumour (GCT) is a benign but locally aggressive primary osteolytic bone tumour, prone to local recurrence after surgery. Denosumab is a human antibody against RANKL, an over-expressed ligand present on normal multinucleated cells, responsible for bone destruction in GCT. We report the case of a patient with an advanced GCT of the distal radius. The lesion was treated with adjuvant denosumab , followed by curettage. Clinical case: A 28 years old patient presented with a classical honeycomb osteolytic lesion in the left distal radius. Core-needle biopsy confirmed the diagnosis of GCT. Due to the proximity to the radio-carpal joint and advanced scalloping of the metaphyseal cortical bone, joint-salvage surgery was not possible. We initiated a neo-adjuvant treatment with denosumab (XGEVA), 120mg/ week for 1 month, followed by monthly injections for 6 months. During this time, a substantial bone recorticalization, without progression of the size of the tumour was noted. No local or systemic side effects were observed. We performed intra-lesional (curettage) excision and bone grafting after 6 months. Histological analysis revealed islets (10%) of viable tumour cells within fibrous tissue. Post-op evolution was eventless. Discussion: While surgery remains the treatment of choice for GCT, joint-salvage may not always be possible in case of extensive epiphyseal involvement. The presence of osteoclast-like giant cells seems to make those lesions prone to the specific anti-RANKL treatment with denosumab. Denosumab appears to slow down tumour growth and promote recorticalization of eroded bone. It might allow less aggressive surgery in selected cases.
Resumo:
Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle tocause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP14 were assayed on the activated mast cells. Betahexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogenactivated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by betahexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase,and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions: Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition.
Resumo:
We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM), platelet aggregating factor (PAF; 0.3 µM) and U44619 (a thromboxane analogue; 1.0 µM), and also endothelin-1 (ET-1; 0.5 µM) induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG), and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml). The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g) actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP). All agents tested caused long-term (LTP; duration ³30 min) or short-term (STP; <30 min) potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP). The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94%) and a 34% increase for STP (antigen: 91%). PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP
Resumo:
It is well known that eosinophilia is a key pathogenetic component of toxocariasis. The objective of the present study was to determine if there is an association between peritoneal and blood eosinophil influx, mast cell hyperplasia and leukotriene B4 (LTB4) production after Toxocara canis infection. Oral inoculation of 56-day-old Wistar rats (N = 5-7 per group) with 1000 embryonated eggs containing third-stage (L3) T. canis larvae led to a robust accumulation of total leukocytes in blood beginning on day 3 and peaking on day 18, mainly characterized by eosinophils and accompanied by higher serum LTB4 levels. At that time, we also noted increased eosinophil numbers in the peritoneal cavity. In addition, we observed increased peritoneal mast cell number in the peritoneal cavity, which correlated with the time course of eosinophilia during toxocariasis. We also demonstrated that mast cell hyperplasia in the intestines and lungs began soon after the T. canis larvae migrated to these compartments, reaching maximal levels on day 24, which correlated with the complete elimination of the parasite. Therefore, mast cells appear to be involved in peritoneal and blood eosinophil infiltration through an LTB4-dependent mechanism following T. canis infection in rats. Our data also demonstrate a tight association between larval migratory stages and intestinal and pulmonary mast cell hyperplasia in the toxocariasis model.
Resumo:
Tight junctions between intestinal epithelial cells prevent ingress of luminal macromolecules and bacteria and protect against inflammation and infection. During stress and inflammation, mast cells mediate increased mucosal permeability by unknown mechanisms. We hypothesized that mast cell tryptase cleaves protease-activated receptor 2 (PAR2) on colonocytes to increase paracellular permeability. Colonocytes expressed PAR2 mRNA and responded to PAR2 agonists with increased [Ca2+]i. Supernatant from degranulated mast cells increased [Ca2+]i in colonocytes, which was prevented by a tryptase inhibitor, and desensitized responses to PAR2 agonist, suggesting PAR2 cleavage. When applied to the basolateral surface of colonocytes, PAR2 agonists and mast cell supernatant decreased transepithelial resistance, increased transepithelial flux of macromolecules, and induced redistribution of tight junction ZO-1 and occludin and perijunctional F-actin. When mast cells were co-cultured with colonocytes, mast cell degranulation increased paracellular permeability of colonocytes. This was prevented by a tryptase inhibitor. We determined the role of ERK1/2 and of beta-arrestins, which recruit ERK1/2 to PAR2 in endosomes and retain ERK1/2 in the cytosol, on PAR2-mediated alterations in permeability. An ERK1/2 inhibitor abolished the effects of PAR2 agonist on permeability and redistribution of F-actin. Down-regulation of beta-arrestins with small interfering RNA inhibited PAR2-induced activation of ERK1/2 and suppressed PAR2-induced changes in permeability. Thus, mast cells signal to colonocytes in a paracrine manner by release of tryptase and activation of PAR2. PAR2 couples to beta-arrestin-dependent activation of ERK1/2, which regulates reorganization of perijunctional F-actin to increase epithelial permeability. These mechanisms may explain the increased epithelial permeability of the intestine during stress and inflammation.
Resumo:
Mast cells that are in close proximity to autonomic and enteric nerves release several mediators that cause neuronal hyperexcitability. This study examined whether mast cell tryptase evokes acute and long-term hyperexcitability in submucosal neurons from the guinea-pig ileum by activating proteinase-activated receptor 2 (PAR2) on these neurons. We detected the expression of PAR2 in the submucosal plexus using RT-PCR. Most submucosal neurons displayed PAR2 immunoreactivity, including those colocalizing VIP. Brief (minutes) application of selective PAR2 agonists, including trypsin, the activating peptide SL-NH2 and mast cell tryptase, evoked depolarizations of the submucosal neurons, as measured with intracellular recording techniques. The membrane potential returned to resting values following washout of agonists, but most neurons were hyperexcitable for the duration of recordings (> 30 min-hours) and exhibited an increased input resistance and amplitude of fast EPSPs. Trypsin, in the presence of soybean trypsin inhibitor, and the reverse sequence of the activating peptide (LR-NH2) had no effect on neuronal membrane potential or long-term excitability. Degranulation of mast cells in the presence of antagonists of established excitatory mast cell mediators (histamine, 5-HT, prostaglandins) also caused depolarization, and following washout of antigen, long-term excitation was observed. Mast cell degranulation resulted in the release of proteases, which desensitized neurons to other agonists of PAR2. Our results suggest that proteases from degranulated mast cells cleave PAR2 on submucosal neurons to cause acute and long-term hyperexcitability. This signalling pathway between immune cells and neurons is a previously unrecognized mechanism that could contribute to chronic alterations in visceral function.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect skin and soft tissue in dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. Trichostatin A (TSA), an antifungal antibiotic, has shown inhibitory effects on the proliferation and induction of apoptosis in various types of cancer cells. In order to evaluate the potential of trichostatin A as a therapeutic drug, cells of grade 3 MCT were cultured and treated with concentrations of 1 nM to 400 nM of TSA. MTT assay and trypan blue exclusion assays were performed to estimate cell growth and cell viability, and cell cycle analysis was evaluated. TSA treatment showed a reduction in numbers of viable cells and an increase of cell death by apoptosis. The cell cycle analysis showed an increase of hypodiploid cells and a reduction of G0/G1 and G2/M -phases. According to these results, trichostatin A may be an interesting potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 Angstrom resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be crystallized and will provide further insights into the conformational significance of mastoparan toxins with respect to their potency and activity in G-protein regulation.
Resumo:
Toxocara vitulorum is a pathogenic nematode from the small intestine of very young buffalo calves. To understand the development of the inflammatory responses in the wall of the gut, samples of tissues were removed from the duodenum, jejunum and ileum of buffalo calves naturally infected with T. vitulorum during the beginning of the infection, at the peak of egg output, as well as during the periods of rejection of the worms and post-rejection. Two additional control groups of uninfected calves (by anti-helminthic therapy of their mothers and after the birth) were also necropsied on days 30 and 50 after birth. Blood samples were fortnightly collected from birth to 174 days post-birth. Blood smears were prepared and stained with Giemsa for eosinophils. The parasitological status of buffalo calves was evaluated through weekly fecal egg counts (EPG) from 1 to 106 days after birth, which revealed that T. vitulorum egg shedding started on day 11, reached the peak of the infection on day 49 and finally expelled the parasites between days 50 and 85 after birth. In the infected buffalo calves, the mast cell population increased significantly, by two-fold in the mucosa (villus-crypt unit (VCU)) of the duodenum and four-fold in the proximal jejunum; but these increases were statistically significant only at the peak of the infection. Although mast cell numbers increased in the mucosa of the ileum as well as in both the submucosal and muscle tissues of the duodenum, proximal jejunum and ileum, the data was not significantly different from the controls. Eosinophil numbers increased in the mucosa of the duodenum (two-five times higher than the control) and proximal jejunum (three-five-fold) during the period of the infection (beginning, peak and rejection). The relative numbers of eosinophils increased in the blood stream from the second to the seventh week. In conclusion, T. vitulorum infection elicited mastocytosis and tissue eosinophilia in the duodenum and proximal jejunum, as well as eosinophilia in the blood stream, during the beginning, at the peak and during the rejection of the worm. After the rejection of the worms, the numbers of these cells returned to normal levels suggesting that these cells may have a role in the process of rejection of T. vitulorum by the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The population dynamics in the enteric connective tissues of eosinophils, mucosal mast cells (MMC), and in the mucosal epithelium of goblet cells were examined morphometrically in fixed ileal tissue of outbred Sprague Dawley rats during the first 32 days of infection with the tapeworm Hymenolepis diminuta. MMC and eosinophils were present in the lamina propria and submucosa; however, only eosinophils were also present in the muscularis externa. Eosinophilic infiltrate was first observed in the lamina propria at 15 days postinfection (dpi) and the numbers of eosinophils remained elevated through 32 dpi. Initial mucosal mastocytosis was detected on 6 dpi and MC numbers continued to rise over the study period without reaching a plateau. Goblet cell hyperplasia occurred only at 32 dpi. In contrast to some intestinal nematode infections where these same 3 cell types are associated with the host's expulsion responses, H. diminuta is not lost by a rapid host response in the outbred Sprague Dawley rat strain used in these experiments. We suggest that either the induction of hyperplasia of these host effector cells in ileum tissue during H. diminuta infection is not capable of triggering parasite rejection mechanisms, or the function of the induced hyperplasia is necessary for some as yet unassociated physiological or tissue architecture change in the host's intestine.
Resumo:
Molecular assays are widely used to prognosticate canine cutaneous mast cell tumors (MCT). There is limited information about these prognostic assays used on MCT that arise in the subcutis. The aims of this study were to evaluate the utility of KIT immunohistochemical labeling pattern, c-KIT mutational status (presence of internal tandem duplications in exon 11), and proliferation markers-including mitotic index, Ki67, and argyrophilic nucleolar organizing regions (AgNOR)-as independent prognostic markers for local recurrence and/or metastasis in canine subcutaneous MCT. A case-control design was used to analyze 60 subcutaneous MCT from 60 dogs, consisting of 24 dogs with subsequent local recurrence and 12 dogs with metastasis, as compared to dogs matched by breed, age, and sex with subcutaneous MCT that did not experience these events. Mitotic index, Ki67, the combination of Ki67 and AgNOR, and KIT cellular localization pattern were significantly associated with local recurrence and metastasis, thereby demonstrating their prognostic value for subcutaneous MCT. No internal tandem duplication mutations were detected in exon 11 of c-KIT in any tumors. Because c-KIT mutations have been demonstrated in only 20 to 30% of cutaneous MCT and primarily in tumors of higher grade, the number of subcutaneous MCT analyzed in this study may be insufficient to draw conclusions on the role c-KIT mutations in these tumors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)