163 resultados para MANSONI SCHISTOSOMULES
Resumo:
Molluscan FMRFamide and two recently discovered platyhelminth FMRFamide-related peptides (FaRPs), GNFFRFamide from the cestode Moniezia expansa and RYIRFamide from the terrestrial turbellarian Artioposthia triangulata, cause dose-dependent contractions of individual muscle fibres from Schistosoma mansoni in vitro. The most potent FaRP tested was the turbellarian peptide RYIRFamide, which produced a concentration-dependent effect between 10(-9) and 10(-7) M. FMRFamide and GNFFRFamide were less potent, inducing contractions between 10(-8)-10(-6) M and 10(-7)-10(-5) M respectively. The contractile effect of each of these peptides was blocked by the presence of 1 mu M FMR-D-Famide. FMRF free acid did not elicit contraction of the muscle fibres. The FaRP-induced contractions did not occur if the Ca2+ was omitted and 0.5 mu M EGTA. was added to the extracellular medium. The FaRP-induced contractions were not blocked by the Ca2+ channel blockers nicardipine, verapamil or diltiazem, although high Kf-induced contractions of these fibres were blocked by nicardipine. These data indicate the presence of FaRP receptors on schistosome muscle fibres and demonstrate their ability to mediate muscle contraction. The action of these endogenous flatworm peptides on schistosome muscle is the first demonstration of a direct excitatory effect of any putative neurotransmitter on the muscle of a flatworm, and establishes a role for FaRPs in neuromuscular transmission in trematodes. In addition, it provides the first evidence that the peptidergic nervous system is a rational target for chemotherapeutic attack in parasitic platyhelmiths.
Resumo:
We have recently isolated a cDNA (SKV1.1) encoding a Shakei-related K+ channel from the human parasitic trematode Schistosoma mansoni. In order to better understand the functions of SKv1.1 protein, the distribution of SKv1.1 protein in adult S. mansoni was analyzed by immunohistochemistry using a region-specific antibody. SKV1.1 proteins were widely expressed in the nervous and muscular systems. The strongest immunoreactivity (IR) was observed in the nervous system of both male and female. In the nervous system, IR for SKv1.1 proteins was localized in cell bodies and nerve fibers of the anterior ganglia, the central commissure, and the main nerve cords. IR was also observed in the dorsal and the ventral peripheral nerve nets, fine nerve fibers entering into a variety of structures such as the dorsal tubercles, longitudinal and ventral muscle fibers, and oral and ventral suckers. In the muscular system, SKv1.1 proteins were localized to the longitudinal, circular, and ventral muscle fibers of male as well as in isolated muscle fibers where native A-type K+ currents were measured. Moderate IR was also seen in a large number of cell bodies in the parenchyma. These results indicate that SKv1.1 protein may play an important role in the regulation of the excitability of neurons and muscle cells of S. mansoni. (C) 1995 Academic Press, Inc.
Resumo:
The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0°C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51mM; Km for glyceraldehyde 3-phosphate is 1.1mM; kcat for dihydroxyacetone phosphate is 7800s(-1) and kcat for glyceraldehyde 3-phosphate is 6.9s(-1)).
Resumo:
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Resumo:
A schistosomose é uma doença parasitária que afecta cerca de 200 milhões de pessoas, com alta prevalência nos trópicos e que origina um grave problema de saúde pública. Ao longo da infecção, o sistema imunitário tenta de várias formas combater a presença do parasita. Inicialmente ocorre uma resposta imune mediada por células do tipo Th1, com o progresso da infecção, a resposta é substituída por uma resposta do tipo Th2 induzida durante a formação de granulomas. Este surge como resposta à presença de produtos tóxicos libertados pelos ovos do parasita retido nos tecidos. O fígado é o principal alvo do depósito de ovos, sofrendo alterações fisiopatológicas, e histológicas. O Mus musculus tem sido muito utilizados na infecção experimental por Schistosoma mansoni, para melhor se conhecer o papel da resposta imunitária na formação de granulomas hepáticos. No decorrer da infecção o granuloma sofre alterações desencadeadas pelas citocinas que o sistema imunitário produz. Estas alterações dividem-se em cinco fases: reacção inicial, exsudativa, exsudativa-produtiva, produtiva e involutiva granuloma. O presente trabalho, estudou as alterações sofridas pelo granuloma hepático (quantidade, dimensão e fase do granuloma), em três diferentes períodos de infecção (55, 90 e 125 dias) no modelo animal Mus musculus infectado com Schistosoma. mansoni, estirpe SmBh distribuídos por três grupos experimentais com diferente número de cercárias (50, 80, e 100). Verificou-se que ao longo da infecção a quantidade de granulomas aumenta, as dimensões têm uma tendência inicial para aumentar mas a partir dos 90 dias após a exposição sofrem uma diminuição. No grupo experimental com maior intensidade de infecção inicial a diminuição deu-se mais cedo. Em relação às fases de desenvolvimento do granuloma este sofre alterações ao longo de toda a infecção. Assim, aos 55 dias predomina a fase exsudativa, aos 90 todos os grupos apresentam maior percentagem de granulomas na fase produtiva e por fim aos 125 dias prevalece a fase involutiva. Todos estes resultados sugerem que a caracterização do granuloma nas diferentes fases de infecção pode depender do número de cercárias da exposição.
Resumo:
Les schistosomiases sont des maladies parasitaires causées par des helminthes du genre Schistosoma (S.) qui touchent 200 millions de personnes dans le monde, mais restent rares chez le voyageur. Contrairement à S. heamatobium, agent de la bilharziose urinaire, S. mansoni, présent en Afrique subsaharienne, en Egypte ainsi qu'aux Antilles, au Surinam et dans le nordest du Brésil, est responsable des formes hépato-intestinales de la maladie. Les larves, vivant en eaux douces contaminées par des selles infectées, peuvent pénétrer la peau des baigneurs sans que l'individu ne s'en rende compte. Les parasites adultes s'établissent dans le système veineux digestif où ils se reproduisent et excrètent des oeufs qui migreront dans la lumière intestinale. Cette revue systématique évalue les effets des médicaments antibilharziens, utilisés seuls ou en association, pour traiter l'infection à S. mansoni.
Resumo:
It has previously been shown that experimental infections of the parasitic trematode Schistosoma mansoni, the adult worms of which reside in the blood stream of the mammalian host, significantly reduced atherogenesis in apolipoprotein E gene knockout (apoE(-/-)) mice. These effects occurred in tandem with a lowering of serum total cholesterol levels in both apoE(-/-) and random-bred laboratory mice and a beneficial increase in the proportion of HDL to LDL cholesterol. To better understand how the parasitic infections induce these effects we have here investigated the involvement of adult worms and their eggs on lipids in the host. Our results indicate that the serum cholesterol-lowering effect is mediated by factors released from S. mansoni eggs, while the presence of adult worms seemed to have had little or no effect. It was also observed that high levels of lipids, particularly triacylglycerols and cholesteryl esters, present in the uninfected livers of both random-bred and apoE(-/-) mice fed a high-fat diet were not present in livers of the schistosome-infected mice. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Algumas espécies do gênero Biomphalaria se apresentam como potenciais hospedeiras ao parasito Schistosoma mansoni, estando a suscetibilidade a este parasito, neste gênero, ligada ao sistema interno de defesa de cada espécie de Biomphalaria. Um dos componentes importantes no sistema imune de invertebrados é a enzima fenoloxidase, que ainda apresenta muitos aspectos desconhecidos no sistema de defesa do gênero Biomphalaria. Foi relatado também que os genes de proteínas relacionadas ao fibrinogênio (FREPs) possuem importância na resposta imune de Biomphalaria glabrata, entre esses, as subfamílias dos FREPs 3 e 4 são diferencialmente expressas em linhagens susceptíveis e resistentes frente a infecção com trematódeos. No entanto os trabalhos existentes em sua maioria estudam a espécie Biomphalaria glabrata, excluindo a espécie Biomphalaria straminea, amplamente distribuída no Brasil e principal responsável pela disseminação da esquistossomose. Tendo em vista a falta de conhecimento sobre a resposta imune destes moluscos hospedeiros, principalmente em relação à expressão de genes imune relevantes e ao tipo de resposta, o presente trabalho se propôs a estudar a variação do número de hemócitos, da produção de fenoloxidase e da expressão dos genes dos FREP 3 e FREP 4 envolvidos com a ligação a antígenos de trematódeos, nas espécies Biomphalaria glabrata, Biomphalaria straminea pós-infecção com S. mansoni, bem como em caramujos pré-expostos a antígenos de S. mansoni. Para isso, os caramujos de cada espécie foram divididos em 2 grupos: pré-expostos e não expostos a antígenos de S. mansoni. Esses grupos foram divididos em sadios e infectados com a cepa LE de S. mansoni. Em B. glabrata não houve alteração no número de hemócitos, porém B. straminea mostrou uma queda após duas horas de infecção. A atividade da fenoloxidase variou após a sensibilização na espécie menos susceptível (B. straminea) e não variou em B. glabrata, também foi identificado que os hemócitos produtores da fenoloxidase são os granulócitos e hialinócitos. Quanto à expressão dos genes, o FREP 3 e 4 apresentaram níveis basais de expressão aumentados após a sensibilização, com perfil de expressão diferente entre as espécies estudadas. Esses resultados confirmam que a resposta imune varia em diversos aspectos entre as espécies do gênero Biomphalaria, e que nas espécies estudadas a enzima fenoloxidase não parece ter o mesmo papel que no sistema de defesa de insetos, diferindo apenas após a sensibilização, que tem influência na expressão dos genes imuno relevantes do FREPs
Resumo:
Schistosomiasis is considered the second most important tropical parasitic disease, with severe socioeconomic consequences for millions of people worldwide. Schistosoma monsoni, one of the causative agents of human schistosomiasis, is unable to synthesize purine nucleotides de novo, which makes the enzymes of the purine salvage pathway important targets for antischistosomal drug development. In the present work, we describe the development of a pharmacophore model for ligands of S. mansoni purine nucleoside phosphorylase (SmPNP) as well as a pharmacophore-based virtual screening approach, which resulted in the identification of three thioxothiazolidinones (1-3) with substantial in vitro inhibitory activity against SmPNP. Synthesis, biochemical evaluation, and structure activity relationship investigations led to the successful development of a small set of thioxothiazolidinone derivatives harboring a novel chemical scaffold as new competitive inhibitors of SmPNP at the low-micromolar range. Seven compounds were identified with IC(50) values below 100 mu M. The most potent inhibitors 7, 10, and 17 with 1050 of 2, 18, and 38 mu M, respectively, could represent new potential lead compounds for further development of the therapy of schistosomiasis.
Resumo:
Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.
Resumo:
Schistosomiasis is one of the world`s greatly neglected tropical diseases, and its control is largely dependent on a single drug, praziquantel. Here, we report the in vitro effect of piplartine, an amide isolated from Piper tuberculatum (Piperaceae), on Schistosoma mansoni adult worms. A piplartine concentration of 15.8 mu M reduced the motor activity of worms and caused their death within 24 h in a RPMI 1640 medium. Similarly, the highest sub-lethal concentration of piplartine (6.3 mu M) caused a 75% reduction in egg production in spite of coupling. Additionally, piplartine induced morphological changes on the tegument, and a quantitative analysis carried out by confocal microscopy revealed an extensive tegumental destruction and damage in the tubercles. This damage was dose-dependent in the range of 15.8-630.2 mu M. At doses higher than 157.6 mu M, piplartine induced morphological changes in the oral and ventral sucker regions of the worms. It is the first time that the schistosomicidal activity has been reported for piplartine. Published by Elsevier Inc.
Resumo:
DNA analysis by molecular techniques has significantly expanded the perspectives of the study and understanding of genetic variability in molluscs that ere vectors of schistosomiasis. In tire present study, the genetic variability of susceptible and resistant B. tenagophila strains to S. mansoni infection was investigated using amplification of their genomic DNA by RAPD-PCR. The products were analyzed by PAGE and stained with silver. The results showed pdymorphism between tested strains with four different primers. We found two bonds of 1,900 and 3,420 bp that were characteristic of the susceptible strains with primer 2. The primers 9 end 10 identified a single polymorphic bond that was also characteristic of (3,136 and 5,041 bp, respectively) susceptible snails. Two polymorphic bonds were detected by primer 15: one with 1 800 bp was characteristic of the resistant strain and the other with 1,700 do in the susceptible one. These results provide additional evidence showing that the RAPD-PCR technique is adequate for the study of polymorphisms in intermediate hosts snails of S. mansoni. The obtained results are expected to expend the knowledge about the genetic variability of the snails and to permit the future identification of genomic sequences specifically related to the resistance/susceptibility of Biompholario to the larval forms of S. mansoni.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)