844 resultados para MAJOR CLADES
Resumo:
The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950-1,259 million years ago (Mya), animals diverged from choanoflagellates 761-957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642-761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be approximate to100 million years more ancient than the Cambrian boundary.
Resumo:
Bayesian, maximum-likelihood, and maximum-parsimony phylogenies, constructed using nucleotide sequences from the plastid gene region trnK-matK, are employed to investigate relationships within the Cactaceae. These phylogenies sample 666 plants representing 532 of the 1438 species recognized in the family. All four subfamilies, all nine tribes, and 69% of currently recognized genera of Cactaceae are sampled. We found strong support for three of the four currently recognized subfamilies, although relationships between subfamilies were not well defined. Major clades recovered within the largest subfamilies, Opuntioideae and Cactoideae, are reviewed; only three of the nine currently accepted tribes delimited within these subfamilies, the Cacteae, Rhipsalideae, and Opuntieae, are monophyletic, although the Opuntieae were recovered in only the Bayesian and maximum-likelihood analyses, not in the maximum-parsimony analysis, and more data are needed to reveal the status of the Cylindropuntieae, which may yet be monophyletic. Of the 42 genera with more than one exemplar in our study, only 17 were monophyletic; 14 of these genera were from subfamily Cactoideae and three from subfamily Opuntioideae. We present a synopsis of the status of the currently recognized genera
Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates
Resumo:
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cisregulatory regions play a dominant role in phenotypic evolution. Key words: ASPM, MCPH1, CDK5RAP2, CENPJ, brain, neurogenesis, primates.
Resumo:
Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diversity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller ""unplaced"" groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. Consistent with more weakly supported results from previous studies, our analyses support the monophyly of the four major clades and the relationships among them. Most importantly, Asterales are inferred to be sister to a clade containing Apiales and Dipsacales. Paracryphiaceae is consistently placed sister to the Dipsacales. However, the exact relationships of Bruniaceae, Columelliaceae, and an Escallonia clade depended upon the dataset. Areas of poor resolution in combined analyses may be partly explained by conflict between the coding and non-coding data partitions. We discuss the implications of these results for our understanding of campanulid phylogeny and evolution, paying special attention to how our findings bear on character evolution and biogeography in Dipsacales.
Resumo:
Orbiculariae consists of two major clades: the cribellate Deinopidea and the much more diverse ecribellate Araneoidea. It has been hypothesized that the higher diversity of Araneoidea is a consequence of the superiority of the viscid orb web. However, this explanation seems incomplete: for example, cribellate silk may perform better than viscid silk in some contexts. Here, we consider the hypothesis that the diversification of Araneoidea was facilitated by changes in microhabitat occupation behavior due to the cheaper viscid orb web. In the present work we investigate the idea that the reduction in site tenacity caused by the emergence of the viscid orb web has led to an increase in the exploration of different resources and to a greater diversification of the Arancoidea through the evolutionary time. To test this idea, we evaluated the response of one cribellate orb web spider (Zosis geniculata Olivier 1789, Uloboridae) and one ecribellate orb web spider (Metazygia rogenhoferi Keyserling 1878, Arancidae) to abrupt prey absence. The changes in site tenacity and the day-to-day investment in web silk were evaluated. Spiders with three-dimensional webs tend to exhibit greater site tenacity than spiders making orb webs. Zosis geniculata and M. rogenhoferi show similar site tenacity when prey is ample. When prey is unavailable, the tenacity of the cribellate species increases while the tenacity of the ecribellate remains unchanged, and the silk investment of both species decreases. However, this decrease in silk investment is more extensive in Z. geniculata. These results coincide with the idea that a less costly ecribellate orb web leads to a lower tenacity and suggest that more frequent microhabitat abandonment in a context of insect radiation (Neiptera) leads to more diverse and opportunistic exploration of microhabitats that, in the long term, may be one explanation for the greater Araneoidea diversification.
Resumo:
Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01-04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The previous uncertain placement of Lysapsus and Pseudis within the neobatrachians was recently resolved by molecular and morphological studies, which supported them as members of the Hylinae subfamily. Their inter- and intrageneric relationships, however, have long been under debate and no studies shed light on these questions. Aiming to elucidate such questions, this paper used 3.2 kb comprising the mitochondrial genes 12S, tRNA valine, 16S and cytochrome b, and the nuclear exon 1 coding for rhodopsin, to all representatives of both genera (except to two subspecies of Pseudis paradoxa). The results identified three major clades: the clade 1 was composed by Lysapsus species and subspecies; clade 2 included the subspecies of the Pseudis paradoxa (Pseudis paradoxa paradoxa, P. paradoxa platensis and P. paradoxa occidentalis), P. fusca, P. bolbodactyla and P. tocantins, and clade 3 was composed by Pseudis southern Brazil species (Pseudis cardosoi and P. minuta). As closely related taxa we found Pseudis minuta + P. cardosoi; P. tocantins + P. fusca, and the subspecies within each genus. Evidence that Pseudis is not monophyletic with respect to Lysapsus was found and we suggest Lysapsus to be a junior synonym of Pseudis. Based on pair-wise comparison among gene sequences, we also suggest that the subspecies of Pseudis paradoxa and Lysapsus limellum must be considered as full species. (c) the Willi Hennig Society 2007.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hylidae is a large family of American, Australopapuan, and temperate Eurasian treefrogs of approximately 870 known species, divided among four subfamilies. Although some groups of Hylidae have been addressed phylogenetically, a comprehensive phylogenetic analysis has never been presented. The first goal of this paper is to review the current state of hylid systematics. We focus on the very large subfamily Hylinae (590 species), evaluate the monophyly of named taxa, and examine the evidential basis of the existing taxonomy. The second objective is to perform a phylogenetic analysis using mostly DNA sequence data in order to (1) test the monophyly of the Hylidae; (2) determine its constituent taxa, with special attention to the genera and species groups which form the subfamily Hylinae, and c) propose a new, monophyletic taxonomy consistent with the hypothesized relationships. We present a phylogenetic analysis of hylid frogs based on 276 terminals, including 228 hylids and 48 outgroup taxa. Included are exemplars of all but 1 of the 41 genera of Hylidae (of all four nominal subfamilies) and 39 of the 41 currently recognized species groups of the species-rich genus Hyla. The included taxa allowed us to test the monophyly of 24 of the 35 nonmonotypic genera and 25 species groups of Hyla. The phylogenetic analysis includes approximately 5100 base pairs from four mitochondrial (12S, tRNA valine, 16S, and cytochrome b) and five nuclear genes (rhodopsin, tyrosinase, RAG-1, seventh in absentia, and 28S), and a small data set from foot musculature. Concurring with previous studies, the present analysis indicates that Hemiphractinae are not related to the other three hylid subfamilies. It is therefore removed from the family and tentatively considered a subfamily of the paraphyletic Leptodactylidae. Hylidae is now restricted to Hylinae, Pelodryadinae, and Phyllomedusinae. Our results support a sister-group relationship between Pelodryadinae and Phyllomedusinae, which together form the sister taxon of Hylinae. Agalychnis, Phyllomedusa, Litoria, Hyla, Osteocephalus, Phrynohyas, Ptychohyla, Scinax, Smilisca, and Trachycephalus are not monophyletic. Within Hyla, the H. albomarginata, H. albopunctata, H. arborea, H. boons, H. cinerea, H. eximia, H. geographica, H. granosa, H. microcephala, H. miotympanum, H. tuberculosa, and H. versicolor groups are also demonstrably nonmonophyletic. Hylinae is composed of four major clades. The first of these includes the Andean stream-breeding Hyla, Aplastodiscus, all Gladiator Frogs, and a Tepuian clade. The second clade is composed of the 30-chromosome Hyla, Lysapsus, Pseudis, Scarthyla, Scinax (including the H. uruguaya group), Sphaenorhynchus, and Xenohyla. The third major clade is composed of Nyctimantis, Phrynohyas, Phyllodytes, and all South American/West Indian casque-headed frogs: Aparasphenodon, Argenteohyla, Corythomantis, Osteocephalus, Osteopilus, Tepuihyla, and Trachycephalus. The fourth major clade is composed of most of the Middle American/Holarctic species groups of Hyla and the genera Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, and Triprion. A new monophyletic taxonomy mirroring these results is presented where Hylinae is divided into four tribes. Of the species currently in Hyla, 297 of the 353 species are placed in 15 genera; of these, 4 are currently recognized, 4 are resurrected names, and 7 are new. Hyla is restricted to H. femoralis and the H. arborea, H. cinerea, H. eximia, and H. versicolor groups, whose contents are redefined. Phrynohyas is placed in the synonymy of Trachycephalus, and Pternohyla is placed in the synonymy of Smilisca. The genus Dendropsophus is resurrected to include all former species of Hyla known or suspected to have 30 chromosomes. Exerodonta is resurrected to include the former Hyla sumichrasti group and some members of the former H. miotympanum group. Hyloscirtus is resurrected for the former Hyla armata, H. bogotensis, and H. larinopygion groups. Hypsiboas is resurrected to include several species groups - many of them redefined here - of Gladiator Frogs. The former Hyla albofrenata and H. albosignata complexes of the H. albomarginata group are included in Aplastodiscus. New generic names are erected for (1) Agalychnis calcarifer and A. craspedopus; (2) Osteocephalus langsdorffii; the (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) and H. tuberculosa groups; (9) the clade composed of the H. pictipes and H. pseudopuma groups; and (10) a clade composed of the H. circumdata, H. claresignata, H. martinsi, and H. pseudopseudis groups. Copyright © American Museum of Natural History 2005.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The genera Pachymenes de Saussure and Santamenes Giordani Soika arerevised and the phylogenetic relationships among their species, based on external mor-phology and male genitalia, are presented. The cladistics analysis, using 22 terminalspecies (19 ingroup and 3 outgroup species) and 44 characters, produced a single clado-gram under implied weighting. Both genera were recovered as paraphyletic, althoughttwo major clades were formed and were well supported by the re-sampling analysis.We propose the synonymy of Pachymenes with Santamenes, and the description of twonew species: P. saussurei Grandinete n.sp. and P. riograndensis Grandinete n.sp..Newcombinations are: Pachymenes novarae (de Saussure) n.comb., P. olympicus (Zavattari)n.comb., P. peregrinus (Zavattari) n.comb. and P. santanna (de Saussure) revised combi-nation. We state the synonymy of P. obscurus orellanoides under P. obscurus consuetus,reviewing the status of the latter and raising P. consuetus to species level. Pachymenesorellanae vardyi is synonymized under P. orellanae; P. ghilianii olivaceus, P. ghilianiiavissimus and P. peruanus are proposed as synonyms of P. ghilianii; P. picturatusobscuratus is synonymized under P. laeviventris; P. picturatus nigromaculatus andP. picturatus var . intermedia are synonymized under P. picturatus and P. a t ra var . ornatis-sima get its lectotype designated and proposed as synonym of P. ater.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)