993 resultados para MAGNETITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-dispersed magnetite nanoparticle synthesis from iron(II) chloride in dimethyl sulfoxide (DMSO)-water solution at different DMSO-water ratios in alkaline medium was reported. TEM and XRD results suggest a single-crystal formation with mean particle size in the range 4-27 nm. Magnetic nanoparticles are formed by the oxidative hydrolysis reaction from green rust species that leads to FeOOH formation, followed by autocatalysis of the adsorbed available Fe(II) on the FeOOH surfaces. The available hydroxyl groups seem to be dependent on the DMSO-water ratio due to strong molecular interactions presented by the solvent mixture. Goethite phase on the magnetite surface was observed by XRD data only for sample synthesized in the absence of DMSO. In addition, cyclic voltammetry with carbon paste electroactive electrode (CV-CPEE) results reveal two reduction peaks near 0 and +400 mV associated with the presence of iron(III) in different chemical environments related to the surface composition of magnetite nanoparticles. The peak near +400 mV is related to a passivate thin layer surface such as goethite on the magnetite nanoparticle, assigned to the intensive hydrolysis reaction due to strong interactions between DMSO-water molecules in the initial solvent mixture that result in a hydroxyl group excess in the medium. Pure magnetite phase was only observed in the samples prepared at 30% (30W) and 80% (80W) water in DMSO in agreement with the structured molecular solvent cluster formation. The goethite phase present on the, magnetite nanoparticle surface like a thin passivate layer only was detectable using CV-CPEE, which is a very efficient, cheap, and powerful tool for surface characterization, and it is able to determine the passivate oxyhydroxide or oxide thin layer presence on the nanoparticle surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties (first-order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei, a cultivated marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a magnetic fingerprint for a specific magnetotactic bacterium. The use of this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites obtained from the polymerization of aniline in the presence of nanoparticles of magnetite (Fe3O4) have been investigated in previous studies. However, there is a lack of information available on the redox interaction of the nanoparticle/conductive polymer couple and the stability that such an oxide can give to the organic phase. In this work, Fe3O4 nanoparticles were incorporated into a PANi matrix by the in-situ oxidative polymerization method. A combination of X-ray diffraction, Mossbauer spectroscopy, transmission electronic microscopy, UV-visible spectroscopy as well as the cyclic voltammetric and Raman spectroscopy techniques, was used to understand the redox effect that the partially oxidized nanoparticles produced on the polymer. It was found that magnetite greatly stabilised PANi, mainly by enhancing the Leucoemeraldine/Emeraldine redox couple and also by reducing the bipolaronic state. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the magnetic and transport properties of nanoscaled Fe3O4 films obtained from Chemical Vapor Deposition (CVD) technique using [(FeFe2III)-Fe-II(OBut)(8)] and [Fe-2(III)(OBut)(6)] precursors. Samples were deposited on different substrates (i.e., MgO (001), MgAl2O4 (001) and Al2O3 (0001)) with thicknesses varying from 50 to 350 nm. Atomic Force Microscopy analysis indicated a granular nature of the samples, irrespective of the synthesis conditions (precursor and deposition temperature, T-pre) and substrate. Despite the similar morphology of the films, magnetic and transport properties were found to depend on the precursor used for deposition. Using [(FeFe2III)-Fe-II(OBut)(8)] as precursor resulted in lower resistivity, higher M-S and a sharper magnetization decrease at the Verwey transition (T-V). The temperature dependence of resistivity was found to depend on the precursor and T-pre. We found that the transport is dominated by the density of antiferromagnetic antiphase boundaries (AF-APB's) when [(FeFe2III)-Fe-II(OBut)(8)] precursor and T-pre = 363 K are used. On the other hand, grain boundary-scattering seems to be the main mechanism when [Fe-2(III)(OBut)(6)] is used. The Magnetoresistance (MR(H)) displayed an approximate linear behavior in the high field regime (H > 796 kA/m), with a maximum value at room-temperature of similar to 2-3 % for H = 1592 kA/m, irrespective from the transport mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abbiamo sintetizzato un nuovo sistema nanogranulare consistente di nanoparticelle di magnetite inserite in idrossiapatite carbonata biomimetica per possibili future prospettive nell'ambito del tissue engineering osseo. Sono stati sintetizzati e studiati tre campioni nanogranulari, uno composto di nanoparticelle di magnetite e due composti di idrossiapatite contenenti magnetite per circa lo 0.8wt.% ed il 4wt.%. Le nanoparticelle di magnetite e il materiale composto sono stati analizzati tramite diffrazione a raggi X (XRD), spettroscopia all'infrarosso (FT-IR) e microscopia in trasmissione elettronica (TEM). Queste analisi hanno fornito informazioni sulla struttura delle nanoparticelle, come il size medio di circa 6 nm e hanno rivelato, sulla loro superficie, la presenza di gruppi idrossilici che incentivano la crescita successiva della fase di idrossiapatite, realizzando una struttura nanocristallina lamellare. I primi studi magnetici, condotti tramite un magnetometro SQUID, hanno mostrato che sia le nanoparticelle as-prepared sia quelle ricoperte di idrossiapatite sono superparamagnetiche a T=300K ma che il rilassamento della magnetizzazione è dominato da interazioni magnetiche dipolari di intensità confrontabile all'interno dei tre campioni. I valori di magnetizzazione più bassi di quelli tipici per la magnetite bulk ci hanno portato ad ipotizzare un possibile fenomeno di canting superficiale per gli spin delle nanoparticelle, fenomeno presente e documentato in letteratura. Nei tre campioni, quello di sole nanoparticelle di magnetite e quelli di idrossiapatite a diverso contenuto di magnetite, si forma uno stato collettivo bloccato a temperature inferiori a circa 20K. Questi risultati indicano che le nanoparticelle di magnetite tendono a formare agglomerati già nello stato as-prepared che sostanzialmente non vengono alterati con la crescita di idrossiapatite, coerentemente con la possibile formazione di legami idrogeno elettrostatici tra i gruppi idrossilici superficiali. L'analisi Mossbauer del campione di magnetite as-prepared ha mostrato un comportamento bimodale nelle distribuzioni dei campi iperfini presenti alle varie temperature. Passando dalle basse alle alte temperature lo spettro collassa in un doppietto, coerentemente con il passaggio dallo stato bloccato allo stato superparamagnetico per il sistema.