997 resultados para Lys49 pla(2)
Resumo:
Phospholipases A(2) constitute the major components from Bothrops snake venoms and have been extensively investigated not only because they are relatively very abundant in these venoms but mainly because they display a range of many relevant biological effects, including: myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anticoagulant, neuromuscular, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoural, anti-malarial and anti-parasitic. The primary structures of several PLA(2)s have been elucidated through direct amino acid sequencing or, inderectly, through the corresponding nucleotide sequencing. Two main subgroups were thus described: (i) Asp49 PLA(2)s, showing low (basic, highly myotoxic) to relatively high (acidic, less or non myotoxic) Ca++-dependent hydrolytic activity upon artificial substrates; (ii) Lys49 PLA(2)s (basic, highly myotoxic) , showing no detectable hydrolytic activity on artificial substrates. Several crystal structures of Lys49 PLAs from genus Bothrops have already been solved, revealing very similar fold patterns. Lack of catalytic activity of myotoxic Lys49-PLA(2)s, first related solely with the fact that Lys49 occupies the position of the calcium ion in the catalyticly active site of Asp49 PLA(2)s, is now also attributed to Lys122 which interacts with the carbonyl of Cys29 hyperpolarising the peptide bond between Cys29 and Gly30 and trapping the fatty acid product in the active site, thus interrupting the catalytic cycle. This hypothesis, supported for three recent structures, is also discussed here. All Asp49 myotoxins showed to be pharmacologically more potent when compared with the Lys49 variants, but phospholipid hydrolysis is not an indispensable condition for the myotoxic, cytotoxic, bactericidal, anti-HIV, anti-parasitic, liposome disrupting or edema-inducing activities. Recent studies on site directed mutagenesis of the recombinant Lys49 myotoxin from Bothrops jararacussu revealed the participation of important amino acid residues in the membrane damaging and myotoxic activities.
Resumo:
Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A(2) (Asp49-PLA(2)) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA(2) PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA(2)s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA(2) from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA(2)s.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A myotoxic Asp49-phospholipase A(2) (Asp49-PLA(2)) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) was crystallized and the molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxic Asp49-PLA2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA(2)s. Despite of this, BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA(2) from B. jararacussu) and other Asp49-PLA(2)s. BthTX-II structure showed a severe distortion of calcium-binding loop leading to displacement of the C-terminal region. Tyr28 side chain, present in this region, is in an opposite position in relation to the same residue in the catalytic activity Asp49-PLA(2)s, making a hydrogen bond with the atom 0 delta 2 of the catalytically active Asp49, which should coordinate the calcium. This high distortion may also be confirmed by the inability of BthTX-II to bind Na+ ions at the Ca2+-binding loop, despite of the crystallization to have occurred in the presence of this ion. In contrast, other Asp49-PLA(2)s which are able to bind Ca2+ ions are also able to bind Na+ ions at this loop. The comparison with other catalytic, non-catalytic and inhibited PLA(2)s indicates that the BthTX-II is not able to bind calcium ions; consequently, we suggest that its low catalytic function is based on an alternative way compared with other PLA(2)s. (c) 2008 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lys49-Phospholipase A(2) (Lys49-PLA(2) - EC 3.1.1.4) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. Both MjTX-II from Bothrops moojeni and BthTX-I from Bothrops jararacussu are dimeric in solution and in the crystalline states, and a model for the Ca2+-independent membrane damaging mechanism has been suggested in which flexibility at the dimer interface region pert-nits quaternary structural transitions between open and closed membrane bound dimer conformations which results in the perturbation of membrane phospholipids and disruption of the bilayer structure [1]. With the aim of gaining insights into the structural determinants involved in protein/lipid association, we report here the crystallization and preliminary X-ray analysis of the (i) MjTX-II/SDS complex at a resolution of 2.78Angstrom, (ii) MjTX-II/STE complex at a resolution of 1.8 Angstrom and (W) BthTX-I/DMPC complex at 2.72Angstrom. These complexes were crystallized by the hanging drop vapour-diffusion technique in (i) HEPES buffer (pH 7.5) 1.8M ammonium sulfate with 2% (w/v) polyethyleneglycol 400, in (ii) 0.6-0.8 M sodium citrate as the precipitant (pH 6.0-6.5) and in (iii) sodium citrate buffer (pH 5.8) and PEG 4000 and 20% isopropanol, respectively. Single crystals of these complexes have been obtained and X-ray diffraction data have been collected at room temperature using a R-AXIS IV imaging plate system and graphite monochromated Cu Kalpha X-ray radiation generated by a Rigaku RU300 rotating anode generator for (i) and (W) and using using a Synchrotron Radiation Source (Laboratorio Nacional de Luz Sincrotron, LNLS, Campinas, Brazil) for (ii).
Resumo:
The protein content of many snake venoms often includes one or more phospholipases A(2) (PLA(2)). In recent years a growing number of venoms from snakes of Agkistrodon, Bothrops and Trimeresurus species have been shown to contain a catalytically inactive PLA(2)-homologue in which the highly conserved aspartic acid at position 49 (Asp49) is substituted by lysine (Lys49). Although demonstrating little or no catalytic activity, these Lys49-PLA(2)s disrupt membranes by a Ca2+-independent mechanism of action. In addition, this family of PLA(2)s demonstrates myotoxic and cytolytic pharmacological activities, however the structural bases underlying these functional properties are poorly understood. Through the application of X-ray crystallography in combination with biophysical and bioinformatics techniques, we are studying structure/function relationships of Lys49-PLA(2)s. We here present results of a systematic X-ray crystallographic and amino acid sequence analysis study of Lys49-PLA(2)s and propose a model to explain the Ca2+ independent membrane damaging activity. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Zhaoermiatoxin, an Arg49 phospholipase A(2) homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA(2)-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49 -> Arg substitution that does not alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA(2) homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA(2) catalytic activity. A single crystal with maximum dimensions of 0.2 x 0.2 x 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 angstrom using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6(4), with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 angstrom.
Resumo:
Venom phospholipase A(2)s (PLA(2)s) display a wide spectrum of pharmacological activities and, based on the wealth of biochemical and structural data currently available for PLA(2)S, mechanistic models can now be inferred to account for some of these activities. A structural model is presented for the role played by the distribution of surface electrostatic potential in the ability of myotoxic D49/K49 PLA(2)s to disrupt multilamellar vesicles containing negatively charged natural and non-hydrolyzable phospholipids. Structural evidence is provided for the ability of K49 PLA(2)s to bind phospholipid analogues and for the existence of catalytic activity in K49 PLA(2)s. The importance of the existence of catalytic activity of D49 and K49 PLA(2)s in myotoxicity is presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Snake venom PLA(2)s have been extensively studied due to their role in mediating and disrupting physiological processes such as coagulation, platelet aggregation and myotoxicity. The Ca2+ ion bound to the putative calcium-binding loop is essential for hydrolytic activity. We report the crystallization in the presence and absence of Ca2+ and X-ray diffraction data collection at 1.60 Angstrom (with Ca2+) and 1.36 Angstrom (without Ca2+) of an Asp49 PLA(2) from Bothrops jararacussu venom. The crystals belong to orthorhombic space group C222(1). Initial refinement and electron density analysis indicate significant conformational. changes upon Ca2+ binding. (C) 2004 Elsevier B.V. All fights reserved.
Resumo:
The venom of Zhaoermia mangshanensis, encountered solely in Mt Mang in China's Hunan Province, exhibits coagulant, phosphodiesterase, L-amino acid oxidase, kallikrein, phospholipase A(2) and myotoxic activities. The catalytically inactive PLA(2) homolog referred to as zhaoermiatoxin is highly myotoxic and displays high myonecrotic and edema activities. Zhaoermiatoxin possesses a molecular weight of 13,972 Da, consists of 121 amino-acid residues crosslinked by seven disulfide bridges and shares high sequence homology with Lys49-PLA(2)s from the distantly related Asian pitvipers. However, zhaoermiatoxin possesses an arginine residue at position 49 instead of a lysine, thereby suggesting a secondary Lys49 -> Arg substitution which results in a catalytically inactive protein. We have determined the first crystal structure of zhaoermiatoxin, an Arg49-PLA(2), from Zhaoermia mangshanensis venom at 2.05 A resolution, which represents a novel member of phospholipase A(2) family. In this structure, unlike the Lys49 PLA(2)s, the C-terminus is well ordered and an unexpected non-polarized state of the putative calcium-binding loop due to the flip of Lys122 towards the bulk solvent is observed. The orientation of the Arg-49 side chain results in a similar binding mode to that observed in the Lys49 PLA(2)s; however, the guadinidium group is tri-coordinated by carbonyl oxygen atoms of the putative calcium-binding loop, whereas the N zeta atom of lysine is tetra-coordinated as a result of the different conformation adopted by the putative calcium-binding loop. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background. An interaction between lectins from marine algae and PLA 2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA 2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA 2 and its complex. Results. This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24-26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA 2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound. Conclusion. The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules. © 2008 Oliveira et al; licensee BioMed Central Ltd.