957 resultados para Lumbar stabilization
Resumo:
Background: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins, The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. Results: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. Conclusions: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states, instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.
Resumo:
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10degreesC by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG = 2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding I measured by stopped-flow circular dichroism. rate of less than 4 min(-1) The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E. coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.
Resumo:
Queiroz BC, Cagliari MF, Amorim CF, Sacco IC. Muscle activation during four Pilates core stability exercises in quadruped position. Arch Phys Med Rehabil 2010;91: 86-92. Objective: To compare the activity of stabilizing trunk and hip muscles in 4 variations of Pilates stabilizing exercises in the quadruped position. Design: Repeated-measures descriptive study. Setting: A biomechanics laboratory at a university school of medicine. Participants: Healthy subjects (N=19; mean age +/- SD, 31 +/- 5y; mean weight +/- SD, 60 +/- 11 kg; mean height +/- SD, 166 +/- 9cm) experienced in Pilates routines. Interventions: Surface electromyographic signals of iliocostalis, multifidus, gluteus maximus, rectus abdominis, and external and internal oblique muscles were recorded in 4 knee stretch exercises: retroverted pelvis with flexed trunk; anteverted pelvis with extended trunk; neutral pelvis with inclined trunk; and neutral pelvis with trunk parallel to the ground. Main Outcome Measures: Root mean square values of each muscle and exercise in both phases of hip extension and flexion, normalized by the maximal voluntary isometric contraction. Results: The retroverted pelvis with flexed trunk position led to significantly increased external oblique and gluteus maximus muscle activation. The anteverted pelvis with trunk extension significantly increased multifidus muscle activity. The neutral pelvis position led to significantly lower activity of all muscles. Rectus abdominis muscle activation to maintain body posture was similar in all exercises and was not influenced by position of the pelvis and trunk. Conclusions: Variations in the pelvic and trunk positions in the knee stretch exercises change the activation pattern of the multifidus, gluteus maximus, rectus abdominis, and oblique muscles. The lower level of activation of the rectus abdominis muscle suggests that pelvic stability is maintained in the 4 exercise positions.
Resumo:
Objective: To develop a new endoscopic approach to the correction of a myelomeningocele-like defect in fetal sheep. Methods: The fetuses of 9 pregnant ewes, with an average gestational age of 115 days, were subjected to a 3.0 x 2.0 cm removal of the skin over the lumbar spine, performed through hysterotomy. The uterus was closed, and three 5-mm endoscopic cannulas, without valve mechanisms, were inserted. In the pilot phase (2 animals), we initially worked exclusively in the amniotic fluid space. In the study phase, we partially withdrew the fetus from the amniotic fluid to completely expose its back. By simply allowing air to enter the amniotic cavity (without gas injection), a working space was created using a uterine lift device. The skin around the defect was dissected, and a biosynthetic cellulose material was applied to cover the area. A continuous suture of the skin was performed to completely hide the material. Results: The combined air/fluid space allowed the skin to be successfully closed in 6 out of 7 cases in the study phase. All fetuses were alive at the end of the procedures. Time to complete the endoscopic part of the procedure fell from 3 to 1 h by the end of this series. Premature birth occurred in 2 of the 4 cases allowed to continue with the pregnancy. Conclusion: A new gasless fetoscopic surgery technique was developed as an alternative to current techniques used for fetal endoscopic surgery. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
The purpose of this study was to examine the preventive effect of exercise on lumbar vertebrae in ovariectomized rats. Three-month-old female Wistar rats were divided into 3 groups: control group (A, n = 10); non-exercised ovariectomized group (B, n = 7) and exercised ovariectomized group (C, n = 7). The rats from group C were subjected to treadmill exercise (15 m/minute in the initial six weeks and 19 m/minute in the next six weeks, 1 hour/day, 4 days/week) for 12 weeks. At death, the fourth lumbar vertebrae were removed and an anthropometrical analysis by a paquimeter and a mechanical compression test by a universal test machine were performed. After 12 weeks, the ovariectomy decreased the superior-inferior vertebral height and the maximal braking load in group B compared to group A, while the exercise increased the vertebral mass in group C compared to both groups A and B (p < 0.01) and the stiffness compared to group B. We concluded the physical activity has an important role to prevent the osteopenia in lumbar vertebrae.
Resumo:
Noxious stimulation of the leg increases hind limb blood flow (HBF) to the ipsilateral side and decreases to the contralateral in rat. Whether or not this asymmetrical response is due to direct control by sympathetic terminals or mediated by other factors such as local metabolism and hormones remains unclear. The aim of this study was to compare responses in lumbar sympathetic nerve activity, evoked by stimulation of the ipsilateral and contralateral sciatic nerve (SN). We also sought to determine the supraspinal mechanisms involved in the observed responses. In anesthetized and paralyzed rats, intermittent electrical stimulation (1 mA, 0.5 Hz) of the contralateral SN evoked a biphasic sympathoexcitation. Following ipsilateral SN stimulation, the response is preceded by an inhibitory potential with a latency of 50 ms (N=26). Both excitatory and inhibitory potentials are abolished following cervical Cl spinal transection (N=6) or bilateral microinjections of muscimol (N=6) in the rostral ventrolateral medulla (RVLM). This evidence is suggestive that both sympathetic potentials are supraspinally mediated in this nucleus. Blockade of RVLM glutamate receptors by microinjection of kynurenic acid (N=4) selectively abolished the excitatory potential elicited by ipsilateral SN stimulation. This study supports the physiological model that activation of hind limb nociceptors evokes a generalized sympathoexcitation, with the exception of the ipsilateral side where there is a withdrawal of sympathetic tone resulting in an increase in HBF. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum state of the atom to a stochastically moving point on the Bloch sphere. Recently, Hofmann, Mahler, and Hess [Phys. Rev. A 57, 4877 (1998)] showed that by making part of the coherent driving proportional to the homodyne photocurrent one can stabilize the state to any point on the bottom-half of the sphere. Here we reanalyze their proposal using the technique of stochastic master equations, allowing their results to be generalized in two ways. First, we show that any point on the upper- or lower-half, but not the equator, of the sphere may be stabilized. Second, we consider nonunit-efficiency detection, and quantify the effectiveness of the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
AB Study Design. A cross-sectional study was conducted. Objective. To determine the activity of the deep and superficial fibers of the lumbar multifidus during voluntary movement of the arm. Summary of Background Data. The multifidus contributes to stability of the lumbar spine. Because the deep and superficial parts of the multifidus are near the center of lumbar joint rotation, the superficial fibers are well suited to control spine orientation, and the deep fibers to control intervertebral movement. However, there currently are limited in vivo data to support this distinction. Methods. Electromyographic activity was recorded in both the deep and superficial multifidus, transversus abdominis, erector spinae, and deltoid using selective intramuscular electrodes and surface electrodes during single and repetitive arm movements. The latency of electromyographic onset in each muscle during single movements and the pattern of electromyographic activity during repetitive movements were compared between muscles. Results. With single arm movements, the onset of electromyography in the erector spinae and superficial multifidus relative to the deltoid was dependent on the direction of movement, but the onset in the deep multifidus and transversus abdominis was not. With repetitive arm movements, peaks in superficial multifidus and erector spinae electromyography occurred only during flexion for most subjects, whereas peaks in deep multifidus electromyography occurred during movement in both directions. Conclusions. The deep and superficial fibers of the multifidus are differentially active during single and repetitive movements of the arm. The data from this study support the hypothesis that the superficial multifidus contributes to the control of spine orientation, and that the deep multifidus has a role in controlling intersegmental motion. (C) 2002 Lippincott Williams & Wilkins, Inc.