911 resultados para Lower Crustal Xenoliths


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study area is located in the NW portion of the Ceará state nearby the city of Santana do Acaraú. Geologically it lies along the Sobral-Pedro II lineament which limits the domains of Ceará Central and Noroeste do Ceará, both belonging to the Borborema Province.The object of study was a NE trending 30km long siliciclastic body (sandstone and conglomerate) bounded by transcurrent dextral faults. The sediments are correlated to the Ipú Formation (Serra Grande Group) from the Parnaiba basin, which age is thought to be Siluro-Devonian. Existing structural data shown that bedding has higher but variable dips (70-45) near the borders faults and much lower to subhorizontal inward the body. The brittle deformation was related to a reactivation, in lower crustal level, of the Sobral-Pedro II lineament (Destro (1987, 1999; Galvão, 2002).The study presented here was focused in applying geophysicals methods (gravimetry and seismic) to determine the geometry of the sandstone/conglomeratic body and together with the structural data, to propose a model to explain its deformation. The residual anomalies maps indicate the presence of two main graben-like structures. The sedimentary pile width was estimated from 2D gravimetric models to be about 500-600 meters. The 3D gravimetric model stressed the two maximum width regions where a good correlation is observed between the isopach geometry and the centripetal strike/dip pattern displayed by the sediments bedding. Two main directions (N-S and E-W) of block moving are interpreted from the distribution pattern of the maximum width regions of the sedimentary rock

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes tectonic and metamorphic features of Precambrian rocks from the Guaxupe Complex and Varginha Shear Zone (VSZ) near the city of Guaxupe in the southern part of the Sao Francisco Craton, southeastern Brazil. The VSZ separates the metasediments of Araxa Group to the north from the granulites of Guaxupe Complex to the south. The sinistral transcurrent VSZ crosses the entire area striking approximately E-W, bending towards SE in the eastern part. Because of this bend, transpressional movement occurred, facilitating the exhumation of the garnet-rich rocks of the deepest exposed part of the granulite-facies terrane.In the garnet granulites the highest pressure-temperature conditions recorded are approximately 1040 degreesC and 14.4 kbar. The rocks underwent decompression from 14.0 kbar to 8.0 kbar, cooling from 980 degreesC to 710 degreesC, the retrograde path following the boundary between the kyanite and sillimanite stability fields. This interval is interpreted to record the uplift of the lower crustal granulite-facies terrane and re-equilibration during magmatic intrusions. For the felsic granulites an interval of 700-810 degreesC and 8.0-11.5 kbar was attained, also pointing to regional decompression.The granulites of the Guaxupe Complex comprise a medium- to high-pressure lower-crustal terrane, with local occurrences of higher-pressure garnet-rich gneisses, which were uplifted along a transpressional segment of the VSZ. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sulfur and carbon isotope compositions of ten scapolites from granulite-facies rocks of the São José do Rio Pardo area, Guaxupé Complex, Brazil, were measured. Scapolite is the primary and major rock-forming mineral in these rocks (up to 40 volume %). The isotopic composition of the sulfate and carbonate group in the scapolite structure has δ34S values of +1.0‰ to +6.7‰, and δ13C values of -14.3‰ to -6.3‰, respectively. The sulfur isotope data may be related to an upper mantle (external) or lower crustal (internal) source for the sulfur, whereas the carbon appears to have been derived from an internal source. Thus, the carbon and sulfur isotope data can be explained without invoking an external (mantle) source. © 1993.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] The 1883 eruption of Krakatau is one of the best known volcanic events in the world, although it was not the largest, nor the deadliest of known eruptions. However, the eruption happened in a critical moment (just after the first global telegraph network was established) and in a strategic place (the Sunda Straits were a naval traffic hot spot at that time). The lecture will explore these events in some detail before presenting an outline on ongoing multidisciplinary efforts to unravel the past and present day plumbing systems of the 1883 eruption and that of the active Anak Krakatau cone. A mid- and a lower-crustal magma storage level exist beneath the volcano, placing significant emphasis on magma-crust interaction in the uppermost, sediment-rich crust. This final aspect shares similarities with the 2011/2012 El Hierro eruption, highlighting the relevance of the interaction between ascending magmas and marine deposits that oceanic magmas have to pass. At Krakatau, shallow-level crustal contamination offers a possible explanation for the explosive nature of the 1883 eruption and also for those of the presently active Anak Krakatau edifice and helps constrain location, style and processes of subvolcanic magma storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-pressure/high-temperature (LP/HT) metamorphic belts are characterised by rocks that experienced abnormal heat flow in shallow crustal levels (T > 600 °C; P < 4 kbar) resulting in anomalous geothermal gradients (60-150 °C/km). The abnormal amount of heat has been related to crustal underplating of mantle-derived basic magmas or to thermal perturbation linked to intrusion of large volumes of granitoids in the intermediate crust. In particular, in this latter context, magmatic or aqueous fluids are able to transport relevant amounts of heat by advection, thus favouring regional LP/HT metamorphism. However, the thermal perturbation consequent to heat released by cooling magmas is responsible also for contact metamorphic effects. A first problem is that time and space relationships between regional LP/HT metamorphism and contact metamorphism are usually unclear. A second problem is related to the high temperature conditions reached at different crustal levels. These, in some cases, can completely erase the previous metamorphic history. Notwithstanding this problem is very marked in lower crustal levels, petrologic and geochronologic studies usually concentrate in these attractive portions of the crust. However, only in the intermediate/upper-crustal levels of a LP/HT metamorphic belt the tectono-metamorphic events preceding the temperature peak, usually not preserved in the lower crustal portions, can be readily unravelled. The Hercynian Orogen of Western Europe is a well-documented example of a continental collision zone with widespread LP/HT metamorphism, intense crustal anatexis and granite magmatism. Owing to the exposure of a nearly continuous cross-section of the Hercynian continental crust, the Sila massif (northern Calabria) represents a favourable area to understand large-scale relationships between granitoids and LP/HT metamorphic rocks, and to discriminate regional LP/HT metamorphic events from contact metamorphic effects. Granulite-facies rocks of the lower crust and greenschist- to amphibolite-facies rocks of the intermediate-upper crust are separated by granitoids emplaced into the intermediate level during the late stages of the Hercynian orogeny. Up to now, advanced petrologic studies have been focused mostly in understanding P-T evolution of deeper crustal levels and magmatic bodies, whereas the metamorphic history of the shallower crustal levels is poorly constrained. The Hercynian upper crust exposed in Sila has been subdivided in two different metamorphic complexes by previous authors: the low- to very low-grade Bocchigliero complex and the greenschist- to amphibolite-facies Mandatoriccio complex. The latter contains favourable mineral assemblages in order to unravel the tectono-metamorphic evolution of the Hercynian upper crust. The Mandatoriccio complex consists mainly of metapelites, meta-arenites, acid metavolcanites and metabasites with rare intercalations of marbles and orthogneisses. Siliciclastic metasediments show a static porphyroblastic growth mainly of biotite, garnet, andalusite, staurolite and muscovite, whereas cordierite and fibrolite are less common. U-Pb ages and internal features of zircons suggest that the protoliths of the Mandatoriccio complex formed in a sedimentary basin filled by Cambrian to Silurian magmatic products as well as by siliciclastic sediments derived from older igneous and metamorphic rocks. In some localities, metamorphic rocks are injected by numerous aplite/pegmatite veins. Small granite bodies are also present and are always associated to spotted schists with large porphyroblasts. They occur along a NW-SE trending transcurrent cataclastic fault zone, which represents the tectonic contact between the Bocchigliero and the Mandatoriccio complexes. This cataclastic fault zone shows evidence of activity at least from middle-Miocene to Recent, indicating that brittle deformation post-dated the Hercynian orogeny. P-T pseudosections show that micaschists and paragneisses of the Mandatoriccio complex followed a clockwise P-T path characterised by four main prograde phases: thickening, peak-pressure condition, decompression and peak-temperature condition. During the thickening phase, garnet blastesis started up with spessartine-rich syntectonic core developed within micaschists and paragneisses. Coevally (340 ± 9.6 Ma), mafic sills and dykes injected the upper crustal volcaniclastic sedimentary sequence of the Mandatoriccio complex. After reaching the peak-pressure condition (≈4 kbar), the upper crust experienced a period of deformation quiescence marked by the static overgrowths of S2 by Almandine-rich-garnet rims and by porphyroblasts of biotite and staurolite. Probably, this metamorphic phase is related to isotherms relaxation after the thickening episode recorder by the Rb/Sr isotopic system (326 ± 6 Ma isochron age). The post-collisional period was mainly characterised by decompression with increasing temperature. This stage is documented by the andalusite+biotite coronas overgrown on staurolite porphyroblasts and represents a critical point of the metamorphic history, since metamorphic rocks begin to record a significant thermal perturbation. Peak-temperature conditions (≈620 °C) were reached at the end of this stage. They are well constrained by some reaction textures and mineral assemblages observed almost exclusively within paragneisses. The later appearance of fibrolitic sillimanite documents a small excursion of the P-T path across the And-Sil boundary due to the heating. Stephanian U-Pb ages of monazite crystals from the paragneiss, can be related to this heating phase. Similar monazite U-Pb ages from the micaschist combined with the lack of fibrolitic sillimanite suggest that, during the same thermal perturbation, micaschists recorded temperatures slightly lower than those reached by paragneisses. The metamorphic history ended with the crystallisation of cordierite mainly at the expense of andalusite. Consequently, the Ms+Bt+St+And+Sill+Crd mineral assemblage observed in the paragneisses is the result of a polyphasic evolution and is characterised by the metastable persistence of the staurolite in the stability fields of the cordierite. Geologic, geochronologic and petrographic data suggest that the thermal peak recorded by the intermediate/upper crust could be strictly connected with the emplacement of large amounts of granitoid magmas in the middle crust. Probably, the lithospheric extension in the relatively heated crust favoured ascent and emplacement of granitoids and further exhumation of metamorphic rocks. After a comparison among the tectono-metamorphic evolutions of the different Hercynian crustal levels exposed in Sila, it is concluded that the intermediate/upper crustal level offers the possibility to reconstruct a more detailed tectono-metamorphic history. The P-T paths proposed for the lower crustal levels probably underestimate the amount of the decompression. Apart from these considerations, the comparative analysis indicates that P-T paths at various crustal levels in the Sila cross section are well compatible with a unique geologic scenario, characterized by post-collisional extensional tectonics and magmas ascent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Der Mavuradonha Layered Complex repräsentiert einen 862 ? 4 Ma alten Komplex, der in einem tiefkrustalen Milieu intrudierte. Eine mehrphasige magmatische Differentiation ist in macro-rhythmischen Einheiten und kleinmaßstäblichen Lagenbau erkennbar, aus denen die Kristallisationssequenzen Pyroxenite, Gabbros/Norite, Leuko-Gabbros oder Ferro-Gabbro und Anorthosite resultieren. ?Nd-Werte zwischen + 0.3 und + 6.6 zeigen krustale Kontamination eines aus dem verarmten Mantel stammenden, tholeiitischen Ursprungsmagma an. ?Nd-Werte (+ 2.4 bis - 3.5) anderer tholeiitischer Gabbros in unmittelbarer Nähe des Komplexes deuten ebenfalls auf Krustenkontamination hin, jedoch in stärkerem Maße.Der Komplex wurde um 554 ? 13 Ma unter granulitfaziellen Bedingungen von 13 ? 2 kbar und 840 ? 30° C überprägt. Die anschließende retrograde, amphibolitfazielle Metamorphose mit Bedingungen von 11 ? 2 kbar und 680 ? 20° C ereignete sich um 546 ? 9 Ma. Abkühlung bis zur Grünschieferfazies erfolgte spätestens um 501 ? 6 Ma.Die vorgestellten Daten zeigen, dass sich der Sambesi-Gürtel im NE Simbabwes als fehlgeschlagenes Rift oder intrakratonisches Becken während einer frühen Pan-Afrikanischen Extensionsphase entwickelte, während die granulitfazielle Metamorphose um 300 Ma später erfolgte. Somit deutet die Intrusion des Mavuradonha Layered Complex rift-bedingten Magmatismus in einer frühen Riftphase an, während das Becken oder Rift während der Pan-Afrikanischen Orogenese geschlossen wurde.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this PhD thesis, a multidisciplinary study has been carried out on metagranitoids and paragneisses from the Eastern Rhodope Massif, northern Greece, to decipher the pre-Alpine magmatic and geodynamic evolution of the Rhodope Massif and to correlate the eastern part with the western/central parts of the orogen. The Rhodope Massif, which occupies the major part of NE Greece and S Bulgaria, represents the easternmost part of the Internal Hellenides. It is regarded as a nappe stack of high-grade units, which is classically subdivided into an upper unit and a lower unit, separated by a SSE-NNW trending thrust plane, the Nestos thrust. Recent research in the central Greek Rhodope Massif revealed that the two units correspond to two distinct terranes of different age, the Permo-Carboniferous Thracia Terrane, which was overthrusted by the Late Jurassic/Early Cretaceous Rhodope Terrane. These terranes are separated by the Nestos suture, a composite zone comprising metapelites, metabasites, metagranitoids and marbles, which record high-pressure and even ultrahigh-pressure metamorphism in places. Similar characteristic rock associations were investigated during this study along several well-constrained cross sections in vincity to the Ada, Sidiro and Kimi villages in the Greek Eastern Rhodope Massif. Field evidence revealed that the contact zone of the two terranes in the Eastern Rhodope Massif is characterized by a mélange of metapelites, migmatitic amphibolites/eclogites, strongly sheared orthogneisses and marbles. The systematical occurrence of this characteristic rock association between the terranes implies that the Nestos suture is a continuous belt throughout the Greek Rhodope Massif. In this study, a new UHP locality could be established and for the first time in the Greek Rhodope, metamorphic microdiamonds were identified in situ in their host zircons using Laser-Raman spectroscopy. The presence of the diamonds as well as element distribution patterns of the zircons, obtained by TOF-SIMS, indicate metamorphic conditions of T > 1000 °C and P > 4 GPa. The high-pressure and ultrahigh-pressure rocks of the mélange zone are considered to have formed during the subduction of the Nestos Ocean in Jurassic times at ~150 Ma. Melting of metapelitic rocks at UHP conditions facilitated the exhumation to lower crustal levels. To identify major crust forming events, basement granitoids were dated by LA-SF-ICPMS and SHRIMP-II U-Pb analyses of zircons. The geochronological results revealed that the Eastern Rhodope Massif consists of two crustal units, a structurally lower Permo-Carboniferous unit corresponding to the Thracia Terrane and a structurally upper Late Jurassic/Early Cretaceous unit corresponding to the Rhodope Terrane, like it was documented for the Central Rhodope Massif. Inherited zircons in the orthogneisses from the Thracia Terrane of the Eastern Rhodope Massif indicate the presence of a pre-existing Neoproterozoic and Ordovician-Silurian basement in this region. Triassic magmatism is witnessed by the zircons of few orthogneisses from the easternmost Rhodope Massif and is interpreted to be related to rifting processes. Whole-rock major and trace element analyses indicate that the metagranitoids from both terranes originated in a subduction-related magmatic-arc environment. The Sr-Nd isotope data for both terranes of the Eastern and Central Rhodope Massif suggest a mixed crust-mantle source with variable contributions of older crustal material as already indicated by the presence of inherited zircons. Geochemical and isotopic similarity of the basement of the Thracia Terrane and the Pelagonian Zone implies that the Thracia Terrane is a fragment of a formerly unique Permo-Carboniferous basement, separated by rifting and opening of the Meliata-Maliac ocean system in Triassic times. A branch of the Meliata-Maliac ocean system, the Nestos Ocean, subducted northwards in Late Jurassic times leading to the formation of the Late Jurassic/Early Cretaceous Rhodope magmatic arc on remnants of the Thracia Terrane as suggested by inherited Permo-Carboniferous zircons. The ~150 Ma zircon ages of the orthogneisses from the Rhodope Terrane indicate that subduction-related magmatism and HP/UHP metamorphism occurred during the same subduction phase. Subduction ceased due to the closure of the Nestos Ocean in the Late Jurassic/Early Cretaceous. The post-Jurassic evolution of the Rhodope Massif is characterized by the exhumation of the Rhodope core complex in the course of extensional tectonics associated with late granite intrusions in Eocene to Miocene times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ivrea–Verbano Zone (IVZ), northern Italy, exposes an attenuated section through the Permian lower crust that records high-temperature metamorphism under lower crustal conditions and a protracted history of extension and exhumation associated partly with the Jurassic opening of the Alpine Tethys ocean. This study presents SHRIMP U–Pb geochronology of rutile from seven granulite facies metapelites from the base of the IVZ, collected from locations spanning ~35 km along the strike of Paleozoic fabrics. Rutile crystallised during Permian high-temperature metamorphism and anatexis, yet all samples give Jurassic rutile U–Pb ages that record cooling through 650–550 °C. Rutile age distributions are dominated by a peak at ~160 Ma, with a subordinate peak at ~175 Ma. Both ~160 and ~175 Ma age populations show excellent agreement between samples, indicating that the two distinctive cooling stages they record were synchronous on a regional scale. The ~175 Ma population is interpreted to record cooling in the footwall of rift-related faults and shear zones, for which widespread activity in the Lower Jurassic has been documented along the western margin of the Adriatic plate. The ~160 Ma age population postdates the activity of all known rift-related structures within the Adriatic margin, but coincides with extensive gabbroic magmatism and exhumation of sub-continental mantle to the floor of the Alpine Tethys, west of the Ivrea Zone. We propose that this ~160 Ma early post-rift age population records regional cooling following episodic heating of the distal Adriatic margin, likely related to extreme lithospheric thinning and associated advection of the asthenosphere to shallow levels. The partial preservation of the ~175 Ma age cluster suggests that the post-rift (~160 Ma) heating pulse was of short duration. The regional consistency of the data presented here, which is in contrast to many other thermochronometers in the IVZ, demonstrates the value of the rutile U–Pb technique for probing the thermal evolution of high-grade metamorphic terrains. In the IVZ, a significant decoupling between Zr-in-rutile temperatures and U–Pb ages of rutile is observed, with the two systems recording events ~120 Ma apart.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Jinshajiang suture zone, located in the eastern part of the Tethyan tectonic domain, is noticeable for a large-scale distribution of Late Jurassic to Triassic granitoids. These granitoids were genetically related to the evolution of the Paleo-Tethys Ocean. The Beiwu, Linong and Lunong granitoids occur in the middle zone of the Jinshajiang Suture Zone, and possess similar geochemical features, indicating they share a common magma source. SIMS zircon U-Pb dating reveals the Beiwu, Linong and Lunong granitic intrusions were emplaced at 233.9±1.4 Ma (2 sigma), 233.1 ±1.4 Ma (2 sigma) and 231.0±1.6 Ma (2 sigma), respectively. All of these granitoids are enriched in abundances of Si (SiO2 =65.2-73.5 wt.%), and large-ion-lithophile-elements (LILEs), but depleted in high-field-strength-elements contents (HFSEs, e.g., Nb, Ta, Ti). In addition, they have low P2O5 contents (0.06-0.11 wt.%), A/CNK values ([molecular Al2O3/(CaO+Na2O+K2O)], mostly<1.1) and 10000Ga/Al ratios (1.7-2.2), consistent with the characteristics of I-type granites. In terms of isotopic compositions, these granitoids have high initial 87Sr/86Sr ratios (0.7078-0.7148), Pb isotopic compositions [(206Pb/204Pb)t=18.213-18.598, (207Pb/204Pb)t=15.637-15.730 and (208Pb/204Pb)t=38.323-38.791], zircon d18O values (7. per mil-9.3 per mil) and negative eNd(t) values (-5.1 to -6.7), suggesting they were predominantly derived from the continental crust. Their Nb/Ta ratios (average value=8.6) are consistent with those of the lower continental crust (LCC). However, variable ?Hf(t) values (-8.6 to +2.8) and the occurrences of mafic microgranular enclaves (MMEs) suggest that mantle-derived melts and lower crustal magmas were involved in the generation of these granitoids. Moreover, the high Pb isotopic ratios and elevated zircon d18O values of these rocks indicate a significant contribution of the upper crustal composition. We propose a model in which the Beiwu, Linong and Lunong granitoids were generated under a late collisional or post-collisional setting. It is possible that this collision was completed before Late Triassic. Decompression induced mantle-derived magmas underplated and provided the heat for the anatexis of the crust. Hybrid melts including mantle-derived and the lower crustal magmas were then generated. The hybrid melts thereafter ascended to a shallow depth and resulted in some degree of sedimentary rocks assimilation. Such three-component mixing magmas source and subsequent fractional crystallization could be responsible for the formation of the Beiwu, Linong and Lunong granitoids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in the Palenyi Island within the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10-11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineral and chemical composition. Closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to values obtained with mineralogical geothermometers (garnet-orthopyroxene and garnet-biotite) and correspond to the high-temperature granulite facies (860-900°C). Identified systematic variations in d18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in d18O cannot be explained by primary isotopic heterogeneity of the protolith. Model calculations of the extent and trend of d18O variations in minerals suggest that fluid-rock interaction at various integral fluid/rock ratios in discrete zones was the only mechanism that could generate the zoning. This demonstrates that focused fluid flux could occur in lower crustal shear zones. Preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compressional wave velocities measured in gabbroic rocks and metabasites recovered from Site 293 of Leg 31 in the Philippine Sea (on the Central Basin Fault) are correlative with seismic velocities determined for Layer 3. The lower crustal origin for these rocks suggested by this data is further supported by the similarity between these samples, dredge haul samples from fracture zones in the main ocean basins and rocks found in ophiolite complexes. These plutonic rocks were possibly introduced to the sea floor by movements along the Central Basin Fault, a major tectonic feature in the Philippine Sea, or formed as part of new ocean crust within a leaky transform fault.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two igneous rock units were recovered at Site 841. More than 200 m of island-arc rhyolites, rhyolitic tuffs, lapilli tuffs, and pumice breccias, divided into five units, compose the basement at the site. These rhyolitic volcanics are late middle Eocene or older and formed part of a subaerial rhyolitic volcano. These low-K rhyolites were produced by fractional crystallization of a more mafic arc-tholeiitic lava or by dehydration melting of lower crustal arc tholeiites. The Site 841 basement rocks are similar in composition to high-SiO2 lavas in the Eocene basement on 'Eua and crystallized from depleted island-arc-tholeiitic basalts like those exposed on 'Eua. No evidence is present in the rhyolites, or in the clasts enclosed within them, for boninite series magmas at Site 841. The Site 841 rhyolitic complex bears no resemblance to Cretaceous rhyolites from the Lord Howe Rise, which are enriched in K and incompatible elements. The volcanic rocks at Site 841 are part of a widely distributed Eocene volcanic episode that marked the earliest phases of subduction in the Tonga region; they are not part of an older crustal fragment. The second igneous sequence is a series of basaltic dikes and sills that intruded Miocene sediments. These basalts have trace element abundances and ratios identical to upper Miocene lavas from the Lau Ridge. The Site 841 basalts do not have any geochemical characteristics that suggest they were generated by unusual thermal conditions in the shallow sub-forearc mantle. They are most reasonably interpreted as intrusions fed by basement dikes propagated from the associated active arc. No evidence for local serpentinite exposures, like those that are common in the Mariana forearc, was found at Site 841. The results from Site 841 provide strong support for hypotheses of forearc evolution that have been advanced for the Izu-Bonin-Mariana system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46° ± 6° anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011° ± 6°. Reoriented lower temperature components of normal and reversed polarity suggest that much of this rotation occurred after the end of the Jaramillo chron (0.99 Ma). The data provide unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby oceanic detachment faults initiate at higher dips and rotate to their present day low-angle geometries as displacement increases.