903 resultados para Low cost airlines
Resumo:
This paper discusses the challenges of making a case for the adoption of low cost railway level crossings in Australia. Several issues are discussed in this paper including legal issues associated with the treatment of low-exposure passive crossings with low cost level crossing warning devices (LCLCWDs); principles of operation and deployment for LCLCWDs; and technical and human factors aspects of safety and availability. The Cooperative Research Centre (CRC) for Rail Innovation’s affordable level crossings project aims to address a number of these technical and human factors issues through research and field trials.
Resumo:
The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3 at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.
Resumo:
In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.
Resumo:
The objective of this chapter is to provide rail practitioners with a practical approach for determining safety requirements of low-cost level crossing warning devices (LCLCWDs) on an Australian railway by way of a case study. LCLCWDs, in theory, allow railway operators to improve the safety of passively controlled crossing by upgrading a larger number of level crossings with the same budget that would otherwise be used to upgrade these using the conventional active level crossing control technologies, e.g. track circuit initiated flashing light systems. The chapter discusses the experience and obstacles of adopting LCLCWDs in Australia, and demonstrates how the risk-based approach may be used to make the case for LCLCWDs.
Resumo:
The Cooperative Research Centre (CRC) for Rail Innovation is conducting a tranche of industry-led research projects looking into safer rail level crossings. This paper will provide an overview of the Affordable Level Crossings project, a project that is performing research in both engineering and human factors aspects of low-cost level crossing warning devices (LCLCWDs), and is facilitating a comparative trial of these devices over a period of 12 months in several jurisdictions. Low-cost level crossing warning devices (LCLCWDs) are characterised by the use of alternative technologies for high cost components including train detection and connectivity (e.g. radar, acoustic, magnetic induction train detection systems and wireless connectivity replacing traditional track circuits and wiring). These devices often make use of solar power where mains power is not available, and aim to make substantial savings in lifecycle costs. The project involves trialling low-cost level crossing warning devices in shadow-mode, where devices are installed without the road-user interface at a number of existing level crossing sites that are already equipped with conventional active warning systems. It may be possible that the deployment of lower-cost devices can provide a significantly larger safety benefit over the network than a deployment of expensive conventional devices, as the lower cost would allow more passive level crossing sites to be upgraded with the same capital investment. The project will investigate reliability and safety integrity issues of the low-cost devices, as well as evaluate lifecycle costs and investigate human factors issues related to warning reliability. This paper will focus on the requirements and safety issues of LCLCWDs, and will provide an overview of the Rail CRC projects.
Resumo:
Low-cost level crossings are often criticized as being unsafe. Does a SIL (safety integrity level) rating make the railway crossing any safer? This paper discusses how a supporting argument might be made for low-cost level crossing warning devices with lower levels of safety integrity and issues such as risk tolerability and derivation of tolerable hazard rates for system-level hazards. As part of the design of such systems according to fail-safe principles, the paper considers the assumptions around the pre-defined safe states of existing warning devices and how human factors issues around such states can give rise to additional hazards.
Resumo:
This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.
Resumo:
Background Cancer-related malnutrition is associated with increased morbidity, poorer tolerance of treatment, decreased quality of life, increased hospital admissions, and increased health care costs (Isenring et al., 2013). This study’s aim was to determine whether a novel, automated screening system was a useful tool for nutrition screening when compared against a full nutrition assessment using the Patient-Generated Subjective Global Assessment (PG-SGA) tool. Methods A single site, observational, cross-sectional study was conducted in an outpatient oncology day care unit within a Queensland tertiary facility, with three hundred outpatients (51.7% male, mean age 58.6 ± 13.3 years). Eligibility criteria: ≥18 years, receiving anticancer treatment, able to provide written consent. Patients completed the Malnutrition Screening Tool (MST). Nutritional status was assessed using the PG-SGA. Data for the automated screening system was extracted from the pharmacy software program Charm. This included body mass index (BMI) and weight records dating back up to six months. Results The prevalence of malnutrition was 17%. Any weight loss over three to six weeks prior to the most recent weight record as identified by the automated screening system relative to malnutrition resulted in 56.52% sensitivity, 35.43% specificity, 13.68% positive predictive value, 81.82% negative predictive value. MST score 2 or greater was a stronger predictor of nutritional risk relative to PG-SGA classified malnutrition (70.59% sensitivity, 69.48% specificity, 32.14% positive predictive value, 92.02% negative predictive value). Conclusions Both the automated screening system and the MST fell short of the accepted professional standard for sensitivity (80%) or specificity (60%) when compared to the PG-SGA. However, although the MST remains a better predictor of malnutrition in this setting, uptake of this tool in the Oncology Day Care Unit remains challenging.
Resumo:
This paper discusses the methodology and design of the Cooperative Research Centre for Rail Innovation’s national low-cost level crossing trial programme currently being conducted in Australia. Three suppliers of innovative low-cost level crossing warning devices were chosen through a tendering and evaluation process. The paper outlines the acceptance criteria that were used to select the suppliers and describes the different types of train detection technologies and innovative cost- reduction solutions that are being tested as part of the trial. The trial is being hosted by three major railways in three different regions in Australia, where systems from the three suppliers have been installed parallel to a baseline conventional track-circuit based level crossing at each site. The paper discusses our experience to date, the trialling process and the challenges that the project has confronted in order to develop a nationally consistent trialling programme.
Resumo:
This paper presents a pose estimation approach that is resilient to typical sensor failure and suitable for low cost agricultural robots. Guiding large agricultural machinery with highly accurate GPS/INS systems has become standard practice, however these systems are inappropriate for smaller, lower-cost robots. Our positioning system estimates pose by fusing data from a low-cost global positioning sensor, low-cost inertial sensors and a new technique for vision-based row tracking. The results first demonstrate that our positioning system will accurately guide a robot to perform a coverage task across a 6 hectare field. The results then demonstrate that our vision-based row tracking algorithm improves the performance of the positioning system despite long periods of precision correction signal dropout and intermittent dropouts of the entire GPS sensor.
Resumo:
The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Resumo:
In 2005, Ginger Myles and Hongxia Jin proposed a software watermarking scheme based on converting jump instructions or unconditional branch statements (UBSs) by calls to a fingerprint branch function (FBF) that computes the correct target address of the UBS as a function of the generated fingerprint and integrity check. If the program is tampered with, the fingerprint and integrity checks change and the target address will not be computed correctly. In this paper, we present an attack based on tracking stack pointer modifications to break the scheme and provide implementation details. The key element of the attack is to remove the fingerprint and integrity check generating code from the program after disassociating the target address from the fingerprint and integrity value. Using the debugging tools that give vast control to the attacker to track stack pointer operations, we perform both subtractive and watermark replacement attacks. The major steps in the attack are automated resulting in a fast and low-cost attack.