999 resultados para Lottie May (Ship)
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
ENGLISH: In May 1971, a joint united states - Mexican experiment, Project Little Window 2, (LW-2) involving data collected by satellite, aircraft and ship sensors was made in the southern part of the Gulf of California. LW-2 was planned as an improved and enlarged version of LW-l (conducted the previous year; Stevenson and Miller, 1971) with field work scheduled to be made within a 200 by 200 km square region in the Gulf of California. The purposes of the new field study were to determine through coordinated measurements from ships, aircraft and satellites, the utility of weather satellites to measure surface temperature features of the ocean from space and specifically to evaluate the high resolution infrared sensors aboard N~ 1, ITOS 1 and NIMBUS 4 and to estimate the magnitude of the atmospheric correction factors needed to bring the data from the spacecraft sensors into agreement with surface measurements. Due to technical problems during LW-2, however, useful data could not be obtained from ITOS 1 and NIMBUS 4 so satellite information from only NOAA-1 was available for comparison. In addition, a new purpose was added, i.e., to determine the feasibility of using an Automatic picture Transmission (APT) receiver on shore and at sea to obtain good quality infrared data for the local region. SPANISH: En mayo 1971, los Estados Unidos y México realizaron un experimento en conjunto, Proyecto Little Window 2 (LW-2), en el que se incluyen datos obtenidos mediante captadores de satélites, aviones y barcos en la parte meridional del Golfo de California. Se planeó LW-2 para mejorar y ampliar el proyecto de LW-l (conducido el año anterior; Stevenson y Miller, 1971), realizándose el trabajo experimental en una región de 200 por 200 km cuadrados, en el Golfo de California. El objeto de este nuevo estudio experimental fue determinar mediante reconocimientos coordinados de barcos, aviones y satélites la conveniencia de los satélites meteorológicos para averiguar las características de la temperatura superficial del océano desde el espacio, y especialmente, evaluar los captadores infrarrojos de alta resolución a bordo de NOAA 1, ITOS 1 Y NIMBUS 4, y estimar la magnitud de los factores de corrección atmosféricos necesarios para corregir los datos de los captadores espaciales para que concuerden con los registros de la superficie. Sin embargo, debido a problemas técnicos durante LW-2, no fue posible obtener datos adecuados de ITOS 1 y NIMBUS 4, as1 que solo se pudo disponer de la información de NOAA 1 para hacer las comparaciones. Además se quiso determinar la posibilidad de usar un receptor de Trasmisión Automático de Fotografias (APT) en el mar para obtener datos infarojos de buena calidad en la región local. (PDF contains 525 pages.)
Resumo:
The 19th century commercial ship-based fishery for gray whales, Eschrichtius robustus, in the eastern North Pacific began in 1846 and continued until the mid 1870’s in southern areas and the 1880’s in the north. Henderson identified three periods in the southern part of the fishery: Initial, 1846–1854; Bonanza, 1855–1865; and Declining, 1866–1874. The largest catches were made by “lagoon whaling” in or immediately outside the whale population’s main wintering areas in Mexico—Magdalena Bay, Scammon’s Lagoon, and San Ignacio Lagoon. Large catches were also made by “coastal” or “alongshore” whaling where the whalers attacked animals as they migrated along the coast. Gray whales were also hunted to a limited extent on their feeding grounds in the Bering and Chukchi Seas in summer. Using all available sources, we identified 657 visits by whaling vessels to the Mexican whaling grounds during the gray whale breeding and calving seasons between 1846 and 1874. We then estimated the total number of such visits in which the whalers engaged in gray whaling. We also read logbooks from a sample of known visits to estimate catch per visit and the rate at which struck animals were lost. This resulted in an overall estimate of 5,269 gray whales (SE = 223.4) landed by the ship-based fleet (including both American and foreign vessels) in the Mexican whaling grounds from 1846 to 1874. Our “best” estimate of the number of gray whales removed from the eastern North Pacific (i.e. catch plus hunting loss) lies somewhere between 6,124 and 8,021, depending on assumptions about survival of struck-but-lost whales. Our estimates can be compared to those by Henderson (1984), who estimated that 5,542–5,507 gray whales were secured and processed by ship-based whalers between 1846 and 1874; Scammon (1874), who believed the total kill over the same period (of eastern gray whales by all whalers in all areas) did not exceed 10,800; and Best (1987), who estimated the total landed catch of gray whales (eastern and western) by American ship-based whalers at 2,665 or 3,013 (method-dependent) from 1850 to 1879. Our new estimates are not high enough to resolve apparent inconsistencies between the catch history and estimates of historical abundance based on genetic variability. We suggest several lines of further research that may help resolve these inconsistencies.
Resumo:
The offshore shelf and canyon habitats of the OCNMS are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary.
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
This cruise report is a summary of a field survey conducted along the continental shelf of the northeastern Gulf of Mexico (GOM), encompassing 70,062 square kilometers of productive marine habitats located between the Mississippi Delta and Tampa Bay, August 13–21, 2010 on NOAA Ship Nancy Foster Cruise NF-10-09-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 50 stations throughout these waters using a random probabilistic sampling design. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, TPHs, PAHs, PCBs, PBDEs) in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, CDOM fluorescence, sediment grain size, and organic carbon content. Discrete water samples were collected just below the sea surface, in addition to any deeper subsurface depths where there was an occurrence of suspicious CDOM fluorescence signals, and analyzed for total BTEX/TPH and carcinogenic PAHs using immunoassay test kits. Other indicators of potential value from a human-dimension perspective were also recorded, including presence of any vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. In addition to the original project goals, both the scientific scope and general location of this project are relevant to addressing potential ecological impacts of the Deepwater Horizon oil spill. While sample analysis is still ongoing, a few preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
A high attention has been paid for constant research on the preservation of materials in the marine environment. This includes all phases of design, development, applied engineering and economics which may influence the construction and operation of ships and underwater installations.
Resumo:
Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory(PPAO) near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near the Plymouth Sound. New International Maritime Organization (IMO) regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. Our observations suggest a three-fold reduction from 2014 to 2015 in ship-emitted SO2 from that direction. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plum es show a high level of compliance to the IMO regulation (> 95 %) in both years. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~ 1/3 in 2014 to ~ 1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.
Resumo:
This paper presents an approach to COLREGs compliant ship navigation. A system architecture is proposed, which will be implemented and tested on two platforms: networked bridge simulators and at sea trials using an autonomous unmanned surface vessel. Attention is paid to collision avoidance software and its risk mitigation.
Resumo:
Ordered to be printed 10th May 1813.
Resumo:
Ordered to be printed 10th May 1813.
Resumo:
The John O. McKellar was a ship that belonged to the Scott Misener fleet. The first ship named after McKellar was launched on Januaray 25, 1929, from Wallsend, England, and was bound for Sault St. Marie, Ontario. This ship became part of the Colonial Steamship Company in 1950, and in 1952 was renamed the J.G. Irwin when construction of a new John O. McKellar was completed. John Oscar McKellar was born on June 28, 1878 in Lobo Township, Middlesex County, west of London, Ont. He worked as a marine engineer, and became acquainted with Robert Scott Misener when the two were shipmates serving with the Algoma central fleet. In 1919, the two men joined forces to run a shipping company. Together, they purchased the wooden steamer "Simon Langell", and worked together on the ship for the next three years. Throughout his career with Misener's company, John McKellar served as Chief Engineer, then Marine Superintendent, and finally Secretary-Treasurer. He died on September 19, 1951.
Resumo:
by John M. Barentine.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.