996 resultados para Lorentz-Minkowski space
Resumo:
We work on some general extensions of the formalism for theories which preserve the relativity of inertial frames with a nonlinear action of the Lorentz transformations on momentum space. Relativistic particle models invariant under the corresponding deformed symmetries are presented with particular emphasis on deformed dilatation transformations. The algebraic transformations relating the deformed symmetries with the usual (undeformed) ones are provided in order to preserve the Lorentz algebra. Two distinct cases are considered: a deformed dilatation transformation with a spacelike preferred direction and a very special relativity embedding with a lightlike preferred direction. In both analysis we consider the possibility of introducing quantum deformations of the corresponding symmetries such that the spacetime coordinates can be reconstructed and the particular form of the real space-momentum commutator remains covariant. Eventually feasible experiments, for which the nonlinear Lorentz dilatation effects here pointed out may be detectable, are suggested.
Resumo:
We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS5 by embedding the 4D Poincaré group into the 4D conformal group SO(2, 4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.
Resumo:
Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Resumo:
This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.
Resumo:
In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.
Resumo:
Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities whether considered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in which they are studied, a number of differences among them occur. Furthermore, we pay attention to some consequences of these objects when they act upon the usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.
Resumo:
The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
According to general relativity, the interaction of a matter field with gravitation requires the simultaneous introduction of a tetrad field, which is a field related to translations, and a spin connection, which is a field assuming values in the Lie algebra of the Lorentz group. These two fields, however, are not independent. By analyzing the constraint between them, it is concluded that the relevant local symmetry group behind general relativity is provided by the Lorentz group. Furthermore, it is shown that the minimal coupling prescription obtained from the Lorentz covariant derivative coincides exactly with the usual coupling prescription of general relativity. Instead of the tetrad, therefore, the spin connection is to be considered as the fundamental field representing gravitation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lorentz transformations are key to relativistic particles. In this work, we construct the Lorentz transformations in the coordinates of the light front, and we will derive from them the well-known time dilation and space contraction in these coordinates, with surprising novel factors. © 2013 American Institute of Physics.
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
El entorno espacial actual hay un gran numero de micro-meteoritos y basura espacial generada por el hombre, lo cual plantea un riesgo para la seguridad de las operaciones en el espacio. La situación se agrava continuamente a causa de las colisiones de basura espacial en órbita, y los nuevos lanzamientos de satélites. Una parte significativa de esta basura son satélites muertos, y fragmentos de satélites resultantes de explosiones y colisiones de objetos en órbita. La mitigación de este problema se ha convertido en un tema de preocupación prioritario para todas las instituciones que participan en operaciones espaciales. Entre las soluciones existentes, las amarras electrodinámicas (EDT) proporcionan un eficiente dispositivo para el rápido de-orbitado de los satélites en órbita terrestre baja (LEO), al final de su vida útil. El campo de investigación de las amarras electrodinámicas (EDT) ha sido muy fructífero desde los años 70. Gracias a estudios teóricos, y a misiones para la demostración del funcionamiento de las amarras en órbita, esta tecnología se ha desarrollado muy rápidamente en las últimas décadas. Durante este período de investigación, se han identificado y superado múltiples problemas técnicos de diversa índole. Gran parte del funcionamiento básico del sistema EDT depende de su capacidad de supervivencia ante los micro-meteoritos y la basura espacial. Una amarra puede ser cortada completamente por una partícula cuando ésta tiene un diámetro mínimo. En caso de corte debido al impacto de partículas, una amarra en sí misma, podría ser un riesgo para otros satélites en funcionamiento. Por desgracia, tras varias demostraciones en órbita, no se ha podido concluir que este problema sea importante para el funcionamiento del sistema. En esta tesis, se presenta un análisis teórico de la capacidad de supervivencia de las amarras en el espacio. Este estudio demuestra las ventajas de las amarras de sección rectangular (cinta), en cuanto a la probabilidad de supervivencia durante la misión, frente a las amarras convencionales (cables de sección circular). Debido a su particular geometría (longitud mucho mayor que la sección transversal), una amarra puede tener un riesgo relativamente alto de ser cortado por un único impacto con una partícula de pequeñas dimensiones. Un cálculo analítico de la tasa de impactos fatales para una amarra cilindrica y de tipo cinta de igual longitud y masa, considerando el flujo de partículas de basura espacial del modelo ORDEM2000 de la NASA, muestra mayor probabilidad de supervivencia para las cintas. Dicho análisis ha sido comparado con un cálculo numérico empleando los modelos de flujo el ORDEM2000 y el MASTER2005 de ESA. Además se muestra que, para igual tiempo en órbita, una cinta tiene una probabilidad de supervivencia un orden y medio de magnitud mayor que una amarra cilindrica con igual masa y longitud. Por otra parte, de-orbitar una cinta desde una cierta altitud, es mucho más rápido, debido a su mayor perímetro que le permite capturar más corriente. Este es un factor adicional que incrementa la probabilidad de supervivencia de la cinta, al estar menos tiempo expuesta a los posibles impactos de basura espacial. Por este motivo, se puede afirmar finalmente y en sentido práctico, que la capacidad de supervivencia de la cinta es bastante alta, en comparación con la de la amarra cilindrica. El segundo objetivo de este trabajo, consiste en la elaboración de un modelo analítico, mejorando la aproximación del flujo de ORDEM2000 y MASTER2009, que permite calcular con precisión, la tasa de impacto fatal al año para una cinta en un rango de altitudes e inclinaciones, en lugar de unas condiciones particulares. Se obtiene el numero de corte por un cierto tiempo en función de la geometría de la cinta y propiedades de la órbita. Para las mismas condiciones, el modelo analítico, se compara con los resultados obtenidos del análisis numérico. Este modelo escalable ha sido esencial para la optimización del diseño de la amarra para las misiones de de-orbitado de los satélites, variando la masa del satélite y la altitud inicial de la órbita. El modelo de supervivencia se ha utilizado para construir una función objetivo con el fin de optimizar el diseño de amarras. La función objectivo es el producto del cociente entre la masa de la amarra y la del satélite y el numero de corte por un cierto tiempo. Combinando el modelo de supervivencia con una ecuación dinámica de la amarra donde aparece la fuerza de Lorentz, se elimina el tiempo y se escribe la función objetivo como función de la geometría de la cinta y las propietades de la órbita. Este modelo de optimización, condujo al desarrollo de un software, que esta en proceso de registro por parte de la UPM. La etapa final de este estudio, consiste en la estimación del número de impactos fatales, en una cinta, utilizando por primera vez una ecuación de límite balístico experimental. Esta ecuación ha sido desarollada para cintas, y permite representar los efectos tanto de la velocidad de impacto como el ángulo de impacto. Los resultados obtenidos demuestran que la cinta es altamente resistente a los impactos de basura espacial, y para una cinta con una sección transversal definida, el número de impactos críticos debidos a partículas no rastreables es significativamente menor. ABSTRACT The current space environment, consisting of man-made debris and tiny meteoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Among these debris a significant portion is due to dead satellites and fragments of satellites resulted from explosions and in-orbit collisions. Mitigation of space debris has become an issue of first concern for all the institutions involved in space operations. Bare electrodynamic tethers (EDT) can provide an efficient mechanism for rapid de-orbiting of defunct satellites from low Earth orbit (LEO) at end of life. The research on EDT has been a fruitful field since the 70’s. Thanks to both theoretical studies and in orbit demonstration missions, this technology has been developed very fast in the following decades. During this period, several technical issues were identified and overcome. The core functionality of EDT system greatly depends on their survivability to the micrometeoroids and orbital debris, and a tether can become itself a kind of debris for other operating satellites in case of cutoff due to particle impact; however, this very issue is still inconclusive and conflicting after having a number of space demonstrations. A tether can be completely cut by debris having some minimal diameter. This thesis presents a theoretical analysis of the survivability of tethers in space. The study demonstrates the advantages of tape tethers over conventional round wires particularly on the survivability during the mission. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. As a first approach to the problem, survival probability has been compared for a round and a tape tether of equal mass and length. The rates of fatal impact of orbital debris on round and tape tether, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 shows good agreement with the analytical result. It also shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because de-orbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high. As the next step, an analytical model derived in this work allows to calculate accurately the fatal impact rate per year for a tape tether. The model uses power laws for debris-size ranges, in both ORDEM2000 and MASTER2009 debris flux models, to calculate tape tether survivability at different LEO altitudes. The analytical model, which depends on tape dimensions (width, thickness) and orbital parameters (inclinations, altitudes) is then compared with fully numerical results for different orbit inclinations, altitudes and tape width for both ORDEM2000 and MASTER2009 flux data. This scalable model not only estimates the fatal impact count but has proved essential in optimizing tether design for satellite de-orbit missions varying satellite mass and initial orbital altitude and inclination. Within the frame of this dissertation, a simple analysis has been finally presented, showing the scalable property of tape tether, thanks to the survivability model developed, that allows analyze and compare de-orbit performance for a large range of satellite mass and orbit properties. The work explicitly shows the product of tether-to-satellite mass-ratio and fatal impact count as a function of tether geometry and orbital parameters. Combining the tether dynamic equation involving Lorentz drag with space debris impact survivability model, eliminates time from the expression. Hence the product, is independent of tether de-orbit history and just depends on mission constraints and tether length, width and thickness. This optimization model finally led to the development of a friendly software tool named BETsMA, currently in process of registration by UPM. For the final step, an estimation of fatal impact rate on a tape tether has been done, using for the first time an experimental ballistic limit equation that was derived for tapes and accounts for the effects of both the impact velocity and impact angle. It is shown that tape tethers are highly resistant to space debris impacts and considering a tape tether with a defined cross section, the number of critical events due to impact with non-trackable debris is always significantly low.