895 resultados para Longitudinal multilevel analysis
Resumo:
High blood pressure (HBP) and obesity is a well-established major risk factor for stroke and coronary heart disease. However, the literatures are scarce about these informations in adolescents from low-and-middle income countries. This school-based survey was carried out among students from Maringá (Brazil) and Buenos Aires (Argentina) selected random sampling. We studied 991 Brazilian adolescents (54.5% girls) in the age range of 14-18 years. In Argentina, we studied 933 adolescents (45.9% female) in the age range of 11-17 years. The outcomes of this study are general obesity, abdominal obesity and HBP. The associated factors analysed were gender, age and health behaviours. The prevalence of obesity was 5.8% in Brazil and 2.8% in Argentina, the prevalence of abdominal obesity was 32.7% in Brazil and 11.1% in Argentina, the prevalence of HBP was 14.9% in Brazil and 13.5% in Argentina. The multilevel analysis showed that older adolescents (>14 years old) have a little likelihood of being overweight, whereas male adolescents are more likely to be obese and have HBP. The abdominal obesity in both indicators were not associated with the independent variables. The prevalence of cardiovascular risk factors is high in Latin American adolescents independent of each country, and was associated with male gender.Journal of Human Hypertension advance online publication, 15 August 2013; doi:10.1038/jhh.2013.74.
Resumo:
Abstract Background For analyzing longitudinal familial data we adopted a log-linear form to incorporate heterogeneity in genetic variance components over the time, and additionally a serial correlation term in the genetic effects at different levels of ages. Due to the availability of multiple measures on the same individual, we permitted environmental correlations that may change across time. Results Systolic blood pressure from family members from the first and second cohort was used in the current analysis. Measures of subjects receiving hypertension treatment were set as censored values and they were corrected. An initial check of the variance and covariance functions proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that the observed trait dispersion pattern follows the assumptions adopted. Conclusion The corrections for censored phenotypes based on ordinary linear models may be an appropriate simple model to correct the data, ensuring that the original variability in the data was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance model adopted.
Resumo:
Abstract Background Physical attributes of the places in which people live, as well as their perceptions of them, may be important health determinants. The perception of place in which people dwell may impact on individual health and may be a more telling indicator for individual health than objective neighborhood characteristics. This paper aims to evaluate psychometric and ecometric properties of a scale on the perceptions of neighborhood problems in adults from Florianopolis, Southern Brazil. Methods Individual, census tract level (per capita monthly familiar income) and neighborhood problems perception (physical and social disorders) variables were investigated. Multilevel models (items nested within persons, persons nested within neighborhoods) were run to assess ecometric properties of variables assessing neighborhood problems. Results The response rate was 85.3%, (1,720 adults). Participants were distributed in 63 census tracts. Two scales were identified using 16 items: Physical Problems and Social Disorder. The ecometric properties of the scales satisfactory: 0.24 to 0.28 for the intra-class correlation and 0.94 to 0.96 for reliability. Higher values on the scales of problems in the physical and social domains were associated with younger age, more length of time residing in the same neighborhood and lower census tract income level. Conclusions The findings support the usefulness of these scales to measure physical and social disorder problems in neighborhoods.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
OBJECTIVES: To determine age and gender differences in health-related quality of life (HRQOL) in children and adolescents across 12 European countries using a newly developed HRQOL measure (KIDSCREEN). METHODS: The KIDSCREEN-52 questionnaire was filled in by 21,590 children and adolescents aged 8-18 from 12 countries. We used multilevel regression analyses to model the hierarchical structure of the data. In addition, effect sizes were computed to test for gender differences within each age group. RESULTS: Children generally showed better HRQOL than adolescents (P < 0.001). While boys and girls had similar HRQOL at young age, girls' HRQOL declined more than boys' (P < 0.001) with increasing age, depending on the HRQOL scale. There was significant variation between countries both at the youngest age and for age trajectories. CONCLUSIONS: For the first time, gender and age differences in children's and adolescents' HRQOL across Europe were assessed using a comprehensive and standardised instrument. Gender and age differences exist for most HRQOL scales. Differences in HRQOL across Europe point to the importance of national contexts for youth's well-being.
Resumo:
This study contributes to research regarding the value of children (VOC) by comparing adolescents' VOC and their intentions to have children across 12 cultures and by exploring the relations between these constructs at the individual and cultural levels using multilevel modeling. A total of 3,348 adolescents from 12 cultures participated in this study. On average, adolescents reported that they intended to have about two children and also reported emotional VOC as being highly important. Adolescents from cultures with a low as compared to a high level of economic development reported a higher importance of the utilitarian-normative VOC. Results of the multilevel analyses showed that the reported emotional VOC was positively related to the number of children adolescents intended to have at the individual level, whereas the utilitarian-normative VOC was not related to adolescents' intention to have children. At the cultural level, the VOC dimensions were only partly related to adolescents' intention to have children. The results are discussed with regard to adolescents' future family orientation and in relation to the VOC approach.
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
Many studies in biostatistics deal with binary data. Some of these studies involve correlated observations, which can complicate the analysis of the resulting data. Studies of this kind typically arise when a high degree of commonality exists between test subjects. If there exists a natural hierarchy in the data, multilevel analysis is an appropriate tool for the analysis. Two examples are the measurements on identical twins, or the study of symmetrical organs or appendages such as in the case of ophthalmic studies. Although this type of matching appears ideal for the purposes of comparison, analysis of the resulting data while ignoring the effect of intra-cluster correlation has been shown to produce biased results.^ This paper will explore the use of multilevel modeling of simulated binary data with predetermined levels of correlation. Data will be generated using the Beta-Binomial method with varying degrees of correlation between the lower level observations. The data will be analyzed using the multilevel software package MlwiN (Woodhouse, et al, 1995). Comparisons between the specified intra-cluster correlation of these data and the estimated correlations, using multilevel analysis, will be used to examine the accuracy of this technique in analyzing this type of data. ^