850 resultados para Longitudinal axis
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Crown dilaceration of permanent teeth occurs due to the non-axial displacement of the already formed hard tissue portion of the developing crown at an angle to their longitudinal axis due to trauma to the primary predecessors. This is a rare condition, representing only 3% of the total of injuries to developing teeth and usually occurs in permanent maxillary incisors because of the close proximity of their tooth germs to the primary incisors, which are more susceptible to trauma. This alteration frequently results from the intrusion of a primary tooth when the child is around 2 years of age, at which time half of the crown of the permanent successor is already formed. Teeth with dilacerated crowns may either erupt with buccal or lingual displacement or remain impacted. The treatment may involve endodontic, orthodontic, restorative and prosthetic procedures. This paper reports the restorative treatment proposed to reestablish the esthetics and function of the affected teeth in three cases of crown dilaceration in permanent maxillary incisors after trauma to their primary predecessors.
Resumo:
“Plasmon” is a synonym for collective oscillations of the conduction electrons in a metal nanoparticle (excited by an incoming light wave), which cause strong optical responses like efficient light scattering. The scattering cross-section with respect to the light wavelength depends not only on material, size and shape of the nanoparticle, but also on the refractive index of the embedding medium. For this reason, plasmonic nanoparticles are interesting candidates for sensing applications. Here, two novel setups for rapid spectral investigations of single nanoparticles and different sensing experiments are presented.rnrnPrecisely, the novel setups are based on an optical microscope operated in darkfield modus. For the fast single particle spectroscopy (fastSPS) setup, the entrance pinhole of a coupled spectrometer is replaced by a liquid crystal device (LCD) acting as spatially addressable electronic shutter. This improvement allows the automatic and continuous investigation of several particles in parallel for the first time. The second novel setup (RotPOL) usesrna rotating wedge-shaped polarizer and encodes the full polarization information of each particle within one image, which reveals the symmetry of the particles and their plasmon modes. Both setups are used to observe nanoparticle growth in situ on a single-particle level to extract quantitative data on nanoparticle growth.rnrnUsing the fastSPS setup, I investigate the membrane coating of gold nanorods in aqueous solution and show unequivocally the subsequent detection of protein binding to the membrane. This binding process leads to a spectral shift of the particles resonance due to the higher refractive index of the protein compared to water. Hence, the nanosized addressable sensor platform allows for local analysis of protein interactions with biological membranes as a function of the lateral composition of phase separated membranes.rnrnThe sensitivity on changes in the environmental refractive index depends on the particles’ aspect ratio. On the basis of simulations and experiments, I could present the existence of an optimal aspect ratio range between 3 and 4 for gold nanorods for sensing applications. A further sensitivity increase can only be reached by chemical modifications of the gold nanorods. This can be achieved by synthesizing an additional porous gold cage around the nanorods, resulting in a plasmon sensitivity raise of up to 50 % for those “nanorattles” compared to gold nanorods with the same resonance wavelength. Another possibility isrnto coat the gold nanorods with a thin silver shell. This reduces the single particle’s resonance spectral linewidth about 30 %, which enlarges the resolution of the observable shift. rnrnThis silver coating evokes the interesting effect of reducing the ensemble plasmon linewidth by changing the relation connecting particle shape and plasmon resonance wavelength. This change, I term plasmonic focusing, leads to less variation of resonance wavelengths for the same particle size distribution, which I show experimentally and theoretically.rnrnIn a system of two coupled nanoparticles, the plasmon modes of the transversal and longitudinal axis depend on the refractive index of the environmental solution, but only the latter one is influenced by the interparticle distance. I show that monitoring both modes provides a self-calibrating system, where interparticle distance variations and changes of the environmental refractive index can be determined with high precision.
Resumo:
For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.
Resumo:
PURPOSE: To quantify the interobserver variability of abdominal aortic aneurysm (AAA) neck length and angulation measurements. MATERIALS AND METHODS: A total of 25 consecutive patients scheduled for endovascular AAA repair underwent follow-up 64-row computed tomographic (CT) angiography in 0.625-mm collimation. AAA neck length and angulation were determined by four blinded, independent readers. AAA neck length was defined as the longitudinal distance between the first transverse CT slice directly distal to the lowermost renal artery and the first transverse CT slice that showed at least a 15% larger outer aortic wall diameter versus the diameter measured directly below the lowermost renal artery. Infrarenal AAA neck angulation was defined as the true angle between the longitudinal axis of the proximal AAA neck and the longitudinal axis of the AAA lumen as analyzed on three-dimensional CT reconstructions. RESULTS: Mean deviation in aortic neck length determination was 32.3% and that in aortic neck angulation was 32.1%. Interobserver variability of aortic neck length and angulation measurements was considerable: in any reader combination, at least one measurement difference was outside the predefined limits of agreement. CONCLUSIONS: Assessment of the longitudinal extension and angulation of the infrarenal aortic neck is associated with substantial observer variability, even if measurement is carried out according to a standardized protocol. Further studies are mandatory to assess dedicated technical approaches to minimize variance in the determination of the longitudinal extension and angulation of the infrarenal aortic neck.
Resumo:
Menisci are anchored to the tibia by means of ligament-like structures called meniscal attachments. Failure material properties of bovine meniscal attachments were obtained. There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). Furthermore, Glycosaminoglycan (GAG) fraction and crimping frequency was obtained for each attachment using histology and differential interference contrast (DIC) respectively. Results showed that the anterior attachment’s insertion had the greatest GAG fraction when compared to the posterior attachment’s insertion. Crimp frequency of the collagen fibrils was homogeneous along the length. Moreover, Scanning Electron Microscopy (SEM) technique was used to reveal the morphology of collagen in human meniscal attachments. Its midsubstance was composed of collagen fascicles running parallel to the longitudinal axis, with a few fibrils running obliquely, and others transversely. There were no differences between attachments for crimping angle or length. Since ligamentous-type tissues are comprised mainly of water, the fluid pressure within meniscal horn attachments was measured using a Fiber Optic Microsensor (FOM). Four cadaveric human joints were subjected to 2BW compressive load (ramp) at 0-, 15-, and 30-degrees of flexion for a minute and then the load was hold for 20 minutes (equilibrium). There were significant differences between 0- and 15- (p1– c5) were obtained. Significant differences were found on the straightened collagen fibers coefficient (c5) between MP and LA attachments (p
Resumo:
OBJECTIVE To assess intramedullary spinal pressure (IMP) in small breed dogs with thoracolumbar disk extrusion. STUDY DESIGN Prospective cohort study. ANIMALS Small breed dogs (n = 14) with thoracolumbar disk extrusion undergoing hemilaminectomy and healthy chondrodystrophic laboratory dogs (control; n = 3) without spinal disease. METHODS Diagnosis was based on clinical and neurological examinations and magnetic resonance imaging (MRI) and was confirmed intraoperatively. A standardized anesthesia protocol and surgical procedure were used to minimize factors that could influence IMP. Intramedullary pressure was measured through a minidurotomy at the site of spinal cord compression using a fiber optic catheter inserted perpendicular to the longitudinal axis of the spinal cord. Measurements were taken after hemilaminectomy and again after removal of extruded disk material. RESULTS Affected dogs had significantly higher IMP compared to control dogs (P = .008) and IMP decreased significantly post-decompression compared with initial values (P < .001). No correlation was found between IMP and neurologic grade, degree of spinal cord compression on MRI, or signal intensity changes on MRI. CONCLUSION Acute thoracolumbar disk extrusion is associated with increased IMP in small breed dogs and surgical decompression results in an immediate decrease of IMP.
Resumo:
INTRODUCTION Conventional 2-dimensional radiography uses defined criteria for outcome assessment of apical surgery. However, these radiographic healing criteria are not applicable for 3-dimensional radiography. The present study evaluated the repeatability and reproducibility of new cone-beam computed tomographic (CBCT)-based healing criteria for the judgment of periapical healing 1 year after apical surgery. METHODS CBCT scans taken 1 year after apical surgery (61 roots of 54 teeth in 54 patients, mean age = 54.4 years) were evaluated by 3 blinded and calibrated observers using 4 different indices. Reformatted buccolingual CBCT sections through the longitudinal axis of the treated roots were analyzed. Radiographic healing was assessed at the resection plane (R index), within the apical area (A index), of the cortical plate (C index), and regarding a combined apical-cortical area (B index). All readings were performed twice to calculate the intraobserver agreement (repeatability). Second-time readings were used for analyzing the interobserver agreement (reproducibility). Various statistical tests (Cohen, kappa, Fisher, and Spearman) were performed to measure the intra- and interobserver concurrence, the variability of score ratios, and the correlation of indices. RESULTS For all indices, the rates of identical first- and second-time scores were always higher than 80% (intraobserver Cohen κ values ranging from 0.793 to 0.963). The B index (94.0%) showed the highest intraobserver agreement. Regarding interobserver agreement, the highest rate was found for the B index (72.1%). The Fleiss' κ values for R and B indices exhibited substantial agreement (0.626 and 0.717, respectively), whereas the values for A and C indices showed moderate agreement (0.561 and 0.573, respectively). The Spearman correlation coefficients for R, A, C, and B indices all exhibited a moderate to very strong correlation with the highest correlation found between C and B indices (rs = 0.8069). CONCLUSIONS All indices showed an excellent intraobserver agreement (repeatability). With regard to interobserver agreement (reproducibility), the B index (healing of apical and cortical defects combined) and the R index (healing on the resection plane) showed substantial congruence and thus are to be recommended in future studies when using buccolingual CBCT sections for radiographic outcome assessment of apical surgery.