998 resultados para Long-wave approximation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quality-controlled snow and meteorological dataset spanning the period 1 August 1993-31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France). Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September), when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN), in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo) and hourly (snow depth, albedo, runoff, surface temperature, soil temperature) time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles) and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (doi:10.1594/PANGAEA.774249) as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing, and to liquefy when agitated. Thixotropic fluids are commonly used in the construction industry (e.g., liquid concrete and drilling fluids), and related applications include some forms of mud flows and debris flows. This paper describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel. A very simple thixotropic model, which predicts the basic theological trends of such fluids, was used. It describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and theology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid (related to its time of restructuration at rest). These findings were successfully compared with systematic bentonite suspension experiments. The present work is the first theoretical analysis combining the basic principles of unsteady flow motion with a thixotropic fluid model and systematic laboratory experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Field observations of instantaneous water surface slopes in the swash zone are presented. For free-surface flows with a hydrostatic pressure distribution the surface slope is equivalent to the horizontal pressure gradient. Observations were made using a novel technique which in its simplest form consists of a horizontal stringline extending seaward from the beach face. Visual observation, still photography or video photography is then sufficient to determine the surface slope where the free-surface cuts the line or between reference points in the image. The method resolves the mean surface gradient over a cross-shore distance of 5 m or more to within +/- 0.001, or 1/20th -1/100th of typical beach gradients. In addition, at selected points and at any instant in time during the swash cycle, the water surface slope can be determined exactly to be dipping either seaward or landward. Close to the location of bore collapse landward dipping water surface slopes of order 0.05-0.1 occur over a very small region (order 0.5 m) at the blunt or convex leading edge of the swash. In the middle and upper swash the water surface slope at this leading edge is usually very close to horizontal or slightly seaward. Behind the leading edge, the water surface slope was observed to be very close to horizontal or dipping seaward at all times throughout the swash uprush. During the backwash the water surface slope was observed to be always dipping seaward, approaching the beach slope, and remained seaward until a new uprush edge or incident bore passed any particular cross-shore location of interest. The observations strongly Suggest that the swash boundary layer is subject to an adverse pressure gradient during uprush and a favourable pressure gradient during the backwash. Furthermore, assuming Euler's equations are a good approximation in the swash, the observations also show that the total fluid acceleration is negative (offshore) for almost the whole of the uprush and for the entire backwash. The observations are contrary to recent work suggesting significant shoreward directed accelerations and pressure gradients occur in the swash (i.e., delta u/delta t > 0 similar to delta p/delta x < 0), but consistent with analytical and numerical solutions for swash uprush and backwash. The results have important implications for sediment transport modelling in the swash zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New experimental data are presented on the dynamics of a transient wave group breaking on a beach. The transient group is tracked during shoaling and wave breaking, together with the long waves forced during those processes. High spatial sampling enables novel resolution of the evolution of the wave envelope during breaking and the correlation between the envelope and the long waves. The data show a strong dynamic long wave setup in front of the group in shallow water. The amplitude of the dynamic setup is likely to be a function of beach slope, and larger on steeper beaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular we are able to treat "patchy'" connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a "lattice-directed" traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs. Article published and (c) American Physical Society 2007

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EChO (Exoplanet atmospheres Characterization Observatory), a proposal for exoplanets exploration space mission, is considered the next step for planetary atmospheres characterization. It would be a dedicated observatory to uncover a large selected sample of planets spanning a wide range of masses (from gas giants to super-Earths) and orbital temperatures (from hot to habitable). All targets move around stars of spectral types F, G, K, and M. EChO would provide an unprecedented view of the atmospheres of planets in the solar neighbourhood. The consortium formed by various institutions of different countries proposed as ESA M3 an integrated spectrometer payload for EChO covering the wavelength interval 0.4 to 16 µm. This instrument is subdivided into 4 channels: a visible channel, which includes a fine guidance system (FGS) and a VIS spectrometer, a near infrared channel (SWiR), a middle infrared channel (MWiR), and a long wave infrared module (LWiR). In addition, it contains a common set of optics spectrally dividing the wavelength coverage and injecting the combined light of parent stars and their exoplanets into the different channels. The proposed payload meets all of the key performance requirements detailed in the ESA call for proposals as well as all scientific goals. EChO payload is based on different spectrometers covering the spectral range mentioned above. Among them, SWiR spectrometer would work from 2.45 microns to 5.45 microns. In this paper, the optical and mechanical designs of the SWiR channel instrument are reported on.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste artigo investiga-se numericamente a interação entre brisas marítima-terrestre e de vale-montanha, que ocorrem no nordeste brasileiro devido à presença do Planalto da Borborema, aplicando o trabalho de expansão associado ao ramo inferior das circulações. Resultados da teoria da máquina térmica são comparados aos resultados 3D, obtidos com a versão brasileira do modelo RAMS. Os resultados indicaram que o efeito do contraste de temperatura no trabalho ligado às circulações (Wa), isoladamente, contribui para a formação de brisas marítimas mais intensas e de brisas terrestres menos intensas. Na realidade, o que se observa são brisas terrestres com intensidades iguais ou até maiores que das brisas marítimas. Assim, a contribuição da montanha para a intensidade das circulações de brisa no período noturno mostra-se extremamente não-linear. O trabalho de expansão que realmente está ligado às circulações, contribui em apenas 7% para o trabalho total. Dessa forma, a maior parte do trabalho total está associada ao trabalho de compressão que a atmosfera realiza para compensar a perda por resfriamento radiativo, e muito da energia disponibilizada para as circulações é gasta para vencer os processos dissipativos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Under the conditions of the rotating wave approximation (RWA), a transition strongly driven by a resonant oscillating field displays the well known symmetric Autler-Townes doublet. However, if the counter-rotating component, neglected in the RWA, is taken into account, the Bloch-Siegert shift gives rise to an Autler-Townes doublet of unequal intensity even in the case of a resonant driving field. This effect is investigated theoretically in a V-shaped three-level double-resonance configuration and the results are presented in this paper. An interesting observation is that the level of asymmetry not only depends on the driving-field intensity but also on the characteristics of the driven system including relaxation rates and equilibrium population distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes; or swabs. Plaque samples were plated onto. non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens, Agar. Plates were incubated in an anaerobic atmosphere and examined after 7-14 days for the presence of black-brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis-like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Filamentous fungi from genus Aspergillus were previously detected in wastewater treatment plants (WWTP) as being Aspergillus flavus (A. flavus), an important toxigenic fungus producing aflatoxins. This study aimed to determine occupational exposure adverse effects due to fungal contamination produced by A. flavus complex in two Portuguese WWTP using conventional and molecular methodologies. Air samples from two WWTP were collected at 1 m height through impaction method. Surface samples were collected by swabbing surfaces of the same indoor sites. After counting A. flavus and identification, detection of aflatoxin production was ensured through inoculation of seven inoculates in coconut-milk agar. Plates were examined under long-wave ultraviolet (UV; 365 nm) illumination to search for the presence of fluorescence in the growing colonies. To apply molecular methods, air samples were also collected using the impinger method. Samples were collected and collection liquid was subsequently used for DNA extraction. Molecular identification of A. flavus was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR detection system (Corbett). Among the Aspergillus genus, the species that were more abundant in air samples from both WWTP were Aspergillus versicolor (38%), Aspergillus candidus (29.1%), and Aspergillus sydowii (12.7%). However, the most commonly species found on surfaces were A. flavus (47.3%), Aspergillus fumigatus (34.4%), and Aspergillus sydowii (10.8%). Aspergillus flavus isolates that were inoculated in coconut agar medium were not identified as toxigenic strains and were not detected by RT-PCR in any of the analyzed samples from both plants. Data in this study indicate the need for monitoring fungal contamination in this setting. Although toxigenic strains were not detected from A. flavus complex, one cannot disregard the eventual presence and potential toxicity of aflatoxins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this paper was to describe the radiation and energy balance, during the lettuce (Lactuca sativa, L. cv. Verônica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside a tunnel greenhouse with polyethylene cover (100 mum) and in an external area, both areas with 35 m². Global, reflected and net radiation, soil heat flux and air temperature (dry and humid) were measured during the crop cycle. A Datalogger, which operated at 1 Hz frequency, storing 5 minutes averages was utilized. The global (K¯) and reflected (K­) radiations showed that the average transmission of global radiation (K¯in / K¯ex) was almost constant, near to 79.59%, while the average ratio of reflected radiation (K­in / K­ex) was 69.21% with 8.47% standard-deviation. The normalized curves of short-wave net radiation, in relation to the global radiation (K*/ K¯), found for both environments, were almost constant at the beginning of cycle; this relation decreased in the final stage of culture. The normalized relation (Rn/ K¯) was bigger in the external area, about 12%, when the green culture covered the soil surface. The long-wave radiation balance average (L*) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83.07% of total net radiation was converted in latent heat evaporation (LE), and 18% in soil heat flux (G), and 9.96% in sensible heat (H), while inside of the greenhouse, 58.71% of total net radiation was converted in LE, 42.68% in H, and 28.79% in G.