996 resultados para Long wave equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

∗The author was partially supported by Alexander von Humboldt Foundation and the Contract MM-516 with the Bulgarian Ministry of Education, Science and Thechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 31B10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 37K40, 35Q15, 35Q51, 37K15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 35R11, 42A38, 26A33, 33E12

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-term time-fractional differential equations have been used for describing important physical phenomena. However, studies of the multi-term time-fractional partial differential equations with three kinds of nonhomogeneous boundary conditions are still limited. In this paper, a method of separating variables is used to solve the multi-term time-fractional diffusion-wave equation and the multi-term time-fractional diffusion equation in a finite domain. In the two equations, the time-fractional derivative is defined in the Caputo sense. We discuss and derive the analytical solutions of the two equations with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin conditions, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to derive long time estimates of the energy for the higher order hyperbolic equations with time-dependent coefficients. in particular, we estimate the energy in the hyperbolic zone of the extended phase space by means of a function f (t) which depends on the principal part and on the coefficients of the terms of order m - 1. Then we look for sufficient conditions that guarantee the same energy estimate from above in all the extended phase space. We call this class of estimates hyperbolic-like since the energy behavior is deeply depending on the hyperbolic structure of the equation. In some cases, these estimates produce a dissipative effect on the energy. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence. Salt marshes can act as natural buffer zones, providing protection from waves during storms. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels and waves are highest is poorly understood. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-m-long wave flume that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are high. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained remarkably stable and resistant to surface erosion under all conditions.The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggest that salt marsh ecosystems can be a valuable component of coastal protection schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.