981 resultados para Logistic growth equation
Resumo:
Correlation between total length (TL), fork length (FL) and standard length (SL) of Raslrineobola argentea (pellegrin 1904) in the Winam Gulf of Lake Victoria indicate that FL = 0.92 TL - 0.74 and SL = 0.90 TL - 1.74. Length-weight relationship of log-transformed data shows that the slopes of the regression lines were 3.06 to 3.22 for juveniles, 2.70 to 3.05 for males and 3.24 to 3.71 for females. The slopes were significantly different between groups at at a =0.05. The Fulton's condition factor (K) was highest in December (1.019-1.073) and March/April (1.015-1.030) but lowest in June (1:00-1.025) for all stations. Significant differences between groups demands for the use of different growth models for juveniles, males and females especially for the von Bertalanffy growth equation which uses length-weight relationship. Observed cyclic viations in condition factor suggests two peak breeding seasons for this species in the Winam Gulf. The practical lmplications of these results in stock assessment using length-based fish stock assessment methods is briefly discussed.
Resumo:
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n approximate to 2 for both melt and cold crystallization. With the Hoffman-Weeks method, the equilibrium melting point is estimated to be 406 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (K-g) of the isothermal melt and cold crystallization is estimated. In addition, the K-g value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Nonisothermal and isothermal melt crystallization kinetics of a novel aryl ether ketone polymer containing meta-phenylene linkages, PEKEKK (T/I), were studied by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny and a new approach by combining the Avrami equation with the Ozawa equation could describe the nonisothermal crystallization. Isothermal crystallization could also be described by the Avrami equation. The activation energies were 187 and 159 kJ/mol for nonisothermal and isothermal crystallization, respectively. Using the Hoffman-Weeks method, the equilibrium melting point T-m(o) was estimated as 353 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter K-g of the isothermal melt crystallization was estimated as 5.49 x 10(5) K-2. The crystallization characteristics of PEKEKK (T/I) were compared with those of all-para PEKEKK. The differences were explained by differences in the chain flexibility of the two polymers.
Resumo:
Schierz, A. (2007). Monitoring knowledge: a text-based approach. Terminology, 13 (2), 125-154. Sponsorship: EPSRC DTG Project IQ, EU IST-FET FP6-516169
Resumo:
The goal of this paper is to improve our understanding of the role of institutional arrangements and ecological factors that facilitate the emergence and sustainability of successful collective action in small-scale fishing social-ecological systems. Using a modified logistic growth function, we simulate how ecological factors (i.e. carrying capacity) affect small-scale fishing communities with varying degrees of institutional development (i.e. timeliness to adopt new institutions and the degree to which harvesting effort is reduced), in their ability to avoid overexploitation. Our results show that strong and timely institutions are necessary but not sufficient to maintain sustainable harvests over time. The sooner communities adopt institutions, and the stronger the institutions they adopt, the more likely they are to sustain the resource stock. Exactly how timely the institutions must be adopted, and by what amount harvesting effort must be diminished, depends on the ecological carrying capacity of the species at the particular location. Small differences in the carrying capacity between fishing sites, even under scenarios of similar institutional development, greatly affects the likelihood of effective collective action. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithic population density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data
Resumo:
The relative growth of the xanthid crab, Panopeus austrobesus was investigated by means of the allometric method. Crabs were obtained in the mangrove formed by the estuary of the rivers Comprido and Escuro (23degrees29'24S 45degrees10'12W), Ubatuba, São Paulo State, Brazil. All crabs were measured to obtain their carapace width (CW) and length (CL), abdomen width (AW) at the basis of the 5(th) somite, and major cheliped propodus length (PL) and height (PH). Males were also measured for their gonopod length (GL). The size of crabs based on CW ranged from 4.0 to 44.8 mm for males and 3.1 to 34.5 mm for females. The relative growth equation (Y = aX(b)) based on the relationship between GL and CW suggested that males reach their sexual maturity near 14.6 mm CW. Such relationship shows a positive allometry during the juvenile phase and an isometric growth in adult life. In females, the estimated size at 50% maturity is 13.0 mm CW, based on the relationship AW vs. CW. Males reach larger sizes than females, which probably provides them better conditions to protect females during courtship. Concerning cheliped size, approximately 73% of the crabs analysed (N = 209), disregarding sex, have the right PL larger than the left. The PL growth shows that specimens with a left major cheliped (26%) have a higher allometric coefficient, despite being smaller considering their CW. Such a difference may compensate the smaller size of the crab during defense or prey capture.
Resumo:
A morphometric study of the xanthoid crab Hexapanopeus schmitti was carried out, using the allometric method. Samples were taken monthly for two years (1998-1999) in the Ubatuba region, northern coast of São Paulo, Brazil. Sex and size were assessed for each specimen, and all crabs were measured to obtain their carapace width (CW) and length (CL), abdomen width (AW) of females, major cheliped propodus length and height (PL and PH), and gonopod length (GL) of males. A total of 301 crabs were analyzed, 209 males and 92 females. The CWs of the crabs ranged from 2.5 to 9.8 mm for males and from 2.8 to 9.4 mm for females. The relative growth equation (y=ax(b)) based on the relationship between GL and CW suggested that males reach their morphological sexual maturity near 6.1 mm CW. In females, the estimated size at 50 % maturity was 4.8 mm CW, based on the relationship of AW vs. CW. Males reach larger sizes than females, which probably favors their ability to guard the females during courtship. In approximately 83 % of the crabs (n= 371), disregarding sex, the right cheliped was larger.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Objectives Our objective in this study was to compare assistance received by individuals in the United States and Sweden with characteristics associated with low, moderate, or high 1-year placement risk in the United States. Methods We used longitudinal nationally representative data from 4,579 participants aged 75 years and older in the 1992 and 1993 waves of the Medicare Current Beneficiary Survey (MCBS) and cross-sectional data from 1,379 individuals aged 75 years and older in the Swedish Aging at Home (AH) national survey for comparative purposes. We developed a logistic regression equation using U.S. data to identify individuals with 3 levels (low, moderate, or high) of predicted 1-year institutional placement risk. Groups with the same characteristics were identified in the Swedish sample and compared on formal and informal assistance received. Results Formal service utilization was higher in Swedish sample, whereas informal service use is lower overall. Individuals with characteristics associated with high placement risk received more formal and less informal assistance in Sweden relative to the United States. Discussion Differences suggest formal services supplement informal support in the United States and that formal and informal services are complementary in Sweden.
Resumo:
I measured the strength of interaction between a marine herbivore and its growing resource over a realistic range of absolute and relative abundances. The herbivores (hermit crabs: Pagurus spp.) have slow and/or weak functional and numerical responses to epiphytic diatoms (Isthmia nervosa), which show logistic growth in the absence of consumers. By isolating this interaction in containers in the field, I mimicked many of the physical and biological variables characteristic of the intertidal while controlling the densities of focal species. The per capita effects of consumers on the population dynamics of their resource (i.e., interaction strength) were defined by using the relationship between hermit crab density and proportional change in the resource. When this relationship is fit by a Weibull function, a single parameter distinguishes constant interaction strength from one that varies as a function of density. Constant interaction strength causes the proportion of diatoms to fall linearly or proportionally as hermit crab density increases whereas per capita effects that increase with density cause an accelerating decline. Although many mathematical models of species interactions assume linear dynamics and invariant parameters, at least near equilibrium, the per capita effects of hermit crabs on diatoms varied substantially, apparently crossing a threshold from weak to strong when consumption exceeded resource production. This threshold separates a domain of coexistence from one of local extinction of the resource. Such thresholds may help explain trophic cascades, resource compensation, and context-dependent interaction strengths, while indicating a way to predict trophic effects, despite nonlinearities, as a function of vital rates.
Resumo:
Se estudió la influencia de las variaciones estacionales del nivel de agua sobre la reproducción y el crecimiento de Potamorhina altamazonica en el río Ucayali durante los años 2008-2012. Se observó que, la reproducción es de carácter estacional, que, tiene sincronía con el periodo de creciente (enero-marzo) alcanzado el ápice en febrero. Se estimó que las hembras alcanzan la talla media de primera madurez a los 17,8 cm y los machos a los 18,4 cm (Lt), en ambos casos a la edad teórica de un año. La mayor proporción de hembras respecto a los machos se observó en el periodo de transición a creciente, y viceversa en la creciente; mientras que el análisis anual mostró dominancia de hembras en los años 2008 y 2012. El análisis de la estructura de tallas mostró que el stock explotado estuvo compuesto por peces cuyas tallas oscilaron de 12,0 a 31,0 cm Lt y no se observaron fuertes fluctuaciones de la talla media anual. La ecuación de crecimiento de von Bertalanffy definida por Lt = 33,55*(1-e(-0,65(t-0,26)) permite estimar que la especie es de rápido crecimiento y que podría vivir en teoría 3,5 años. Los peces mostraron mejor condición o robustez en los periodos de transición a creciente y creciente, dado a que en estos, se inundan vastas áreas de bosques de llanura convirtiéndose en hábitats óptimos que favorecen la reproducción en los peces adultos y el crecimiento en los reclutas.
Resumo:
Despite decades of experimental and theoretical investigation on thin films, considerable uncertainty exists in the prediction of their critical rupture thickness. According to the spontaneous rupture mechanism, common thin films become unstable when capillary waves. at the interfaces begin to grow. In a horizontal film with symmetry at the midplane. unstable waves from adjacent interfaces grow towards the center of the film. As the film drains and becomes thinner, unstable waves osculate and cause the film to rupture, Uncertainty sterns from a number of sources including the theories used to predict film drainage and corrugation growth dynamics. In the early studies, (lie linear stability of small amplitude waves was investigated in the Context of the quasi-static approximation in which the dynamics of wave growth and film thinning are separated. The zeroth order wave growth equation of Vrij predicts faster wave growth rates than the first order equation derived by Sharma and Ruckenstein. It has been demonstrated in an accompanying paper that film drainage rates and times measured by numerous investigations are bounded by the predictions of the Reynolds equation and the more recent theory of Manev, Tsekov, and Radoev. Solutions to combinations of these equations yield simple scaling laws which should bound the critical rupture thickness of foam and emulsion films, In this paper, critical thickness measurements reported in the literature are compared to predictions from the bounding scaling equations and it is shown that the retarded Hamaker constants derived from approximate Lifshitz theory underestimate the critical thickness of foam and emulsion films, The non-retarded Hamaker constant more adequately bounds the critical thickness measurements over the entire range of film radii reported in the literature. This result reinforces observations made by other independent researchers that interfacial interactions in flexible liquid films are not adequately represented by the retarded Hamaker constant obtained from Lifshitz theory and that the interactions become significant at much greater separations than previously thought. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.
Resumo:
Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 us +/- 1.1 us and the exponential decays with a rate of 64 us +/- 15 us. The phenomenological model offers an interpretation of the material removal process.