911 resultados para Load impact load capacity
Resumo:
During the harvest season in Iowa, it is common to have single axle loads on secondary roads and bridges that are excessive (typical examples are grain carts) and well beyond normal load limits. Even though these excessive loads occur only during a short time of the year, they may do significant damage to pavements and bridges. In addition, the safety of some bridges may be compromised because of the excessive loads, and sometimes there may be little indication to the users that damage may be imminent. At this time there are no Iowa laws regulating axle loads allowed for agricultural equipment. This study looks at the potential problems this may cause on secondary roads and timber stringer bridges. Both highway pavement and timber bridges are evaluated in this report. A section (panel) of Iowa PCC paved county road was chosen to study the effects of heavy agricultural loads on pavements. Instrumentation was applied to the panel and a heavily loaded grain cart was rolled across. The collected data were analyzed for any indication of excessive stresses of the concrete. The second study, concerning excessive loads on timber stringer bridges, was conducted in the laboratory. Four bridge sections were constructed and tested. Two of the sections contained five stringers and two sections had three stringers. Timber for the bridges came from a dismantled bridge, and deck panels were cut from new stock. All timber was treated with creosote. A hydraulic load was applied at the deck mid-span using a foot print representing a tire from a typical grain cart. Force was applied until failure of the system resulted. The collected data were evaluated to provide indications of load distribution and for comparison with expected wheel loads for a typical heavily loaded single axle grain cart. Results of the pavement tests showed that the potential of over-stressing the pavement is a possibility. Even though most of the tension stress levels recorded were below the rupture strength of the concrete, there were a few instances where the indicated tension stress level exceeded the concrete rupture strength. Results of the bridge tests showed that when the static ultimate load capacity of the timber stringer bridge sections was reached, there was sudden loss of capacity. Prior to reaching this ultimate capacity, the load sharing between the stringers was very uniform. The failure was characterized by loss of flexural capacity of the stringers. In all tests, the ultimate test load exceeded the wheel load that would be applied by an 875 bushel single axle grain cart.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
The Iowa Department of Transportation (IaDOT) was interested in investigating the use of epoxy adhesive anchorages for the attachment of posts used in the BR27C combination bridge rail system. Alternative anchorage concepts were developed using a modified version of the ACI 318-11 procedures for embedded anchor design. Four design concepts were developed for review by IaDOT, including: (1) a four-bolt square anchorage, (2) a four-bolt spread anchorage, (3) a twobolt centered anchorage, and (4) a two-bolt offset anchorage. IaDOT representatives selected the four-bolt spread anchorage and the two-bolt offset anchorage as the preferred designs for evaluation. In addition to these two proposed configurations, IaDOT also requested that the researchers evaluate a third option that had been previously installed on the US-20 bridge near Hardin, IA. The proposed alternative anchorages and the original cast-in-place anchorage for the BR27C combination bridge rail were evaluated through dynamic component testing. The test of the original cast-in-place anchorage was used a baseline for comparison with the alternative designs. Test no. IBP-1 of the original cast-in-place anchorage developed a peak load of 22.9 kips (101.9 kN) at a deflection of 1.5 in. (38 mm). All three of the tested alternative anchorages provided greater load capacity than the original cast-in-place design and were deemed acceptable surrogates. Of the three alternative designs, the two-bolt offset design was deemed the best option.
Resumo:
Tämän työn tavoitteena oli laatia KSS Energia Oy:n keskijänniteverkon kehittämissuunnitelma. Tätä varten selvitettiin verkon nykytila ja sen toimivuus korvaustilanteissa. Suunnitelmaa varten laadittiin verkoston vuoteen 2020 asti ulottuva kuormitusennuste. Kehittämissuunnitelmassa paikannettiin alueet, joilla kuormitettavuus, korvattavuus tai oikosulkukestoisuus olisivat toimivansähkönjakelun esteinä tulevaisuudessa. Työn painopistealueiksi muodostuivat Vuolenkosken, Paimenpolun ja Valkealan alueet. Näiden alueiden kasvavan tehontarpeen tyydyttämiseksi selvitettiin uusien sähköasemien rakentamisvaihtoehtoja. Suunnitelmassa tarkasteltiin ja vertailtiin kolmen uuden sähköaseman rakentamista keskijänniteverkon saneerausvaihtoehtoon. Työssä selvitettiin myös miten alueen kuormituksen kasvun aiheuttama lisätehontarpeen jakelu voidaan hoitaa. Näiden alueiden kuormituksen kasvu edellyttää uusien sähköasemien rakentamista seuraavien 10vuoden kuluessa.
Principal components analysis for quality evaluation of cooled banana 'Nanicão' in different packing
Resumo:
This work aims determinate the evaluation of the quality of 'Nanicão' banana, submitted to two conditions of storage temperature and three different kinds of package, using the technique of the Analysis of Principal Components (ACP), as a basis for an Analysis of Variance. The fruits used were 'Nanicão' bananas, at ripening degree 3, that is, more green than yellow. The packages tested were: "Torito" wood boxes, load capacity: 18 kg; "½ box" wood boxes, load capacity: 13 kg; and cardboard boxes, load capacity: 18 kg. The temperatures assessed were: room temperature (control); and (13±1ºC), with humidity controlled to 90±2,5%. Fruits were discarded when a sensory analysis determined they had become unfit for consumption. Peel coloration, percentages of imperfection, fresh mass, total acidity, pH, total soluble solids and percentages of sucrose were assessed. A completely randomized design with a 2-factorial treatment structure (packing X temperature) was used. The obtained data were analyzed through a multivariate analysis known as Principal Components Analysis, using S-plus 4.2. The conclusion was that the best packages to preserve the fruit were the ½ box ones, which proves that it is necessary to reduce the number of fruits per package to allow better ventilation and decreases mechanical injuries and ensure quality for more time.
Resumo:
Metsäpolttoaineiden käyttö kasvaa lämpö- ja voimalaitoksissa ja mahdollisissa biojalostamoissa. Metsäpolttoaineilla voidaan saavuttaa päästövähennyksiä korvaamalla päästöintensiivisempiä polttoaineita. Metsäpolttoaineen kysynnän kasvu suurkäyttöpaikoilla luo uusia vaatimuksia metsäbiomassan hankintaan. Metsäpolttoaineiden vesitiekuljetuksen sisältämiä logistiikkajärjestelmiä kehittämällä toimitusvarmuutta pystytään parantamaan ja hankintaa laajentamaan kustannustehokkaasti ja ympäristöystävällisesti. Kuljetuskokeilut antoivat uutta tietoa vesitiekuljetuksen sisältämästä hankinnasta. Lastikapasiteetti nykyisen kaltaisessa Eurooppa IIa -suurproomussa vaihtelee 1200 tonnista jopa 1800 tonniin (kosteus 40 %) riippuen tiivistymisestä ja proomun modifiointiasteesta. Metsähakkeen energiatiheys oli suurproomukuljetuksissa keskimäärin 1 MWh/i-m3, joka oli 25 % parempi kuin vertailun hakerekkakuljetuksissa. Vesitiekuljetuksen kustannukset olivat kuljetuskokeiluissa lastauksineen ja purkuineen 0,02 €/MWh/km, ollen noin 20 % ketjun kokonaiskustannuksista. Simuloinnin edullisimpien vesitiekuljetusvaihtoehtojen vaihteluvälin kustannukset olivat vastaavasti 0,013 - 0,026 €/MWh/km. Lastauksen ja purun kustannus oli 0,4 - 0,6 €/MWh ja vesitiekuljetus 0,9 - 2,0 €/MWh (100 km). Ketjun kokonaiskustannukset hakkuutähdehakkeelle vaihtelivat simuloinnin edullisimpien vaihtoehtojen perusteella välillä 10,8 - 12,1 €/MWh (30 km rekka, 100 km proomu). Kuljetusketjujen simuloinnin kustannukset osoittivat proomukuljetusketjun olevan kilpailukykyinen vaihtoehto hakerekkakuljetusketjulle kalustosta ja vuosittaisista käyttötunneista riippuen kuljetusetäisyyden ylittäessä 100 km. Kustannustehokkain ratkaisu vesitiekuljetuksessa saavutettiin pienen aluksen ja suuren kokoluokan proomuyksikön kytkyeellä. Haketus kannattaa toteuttaa ennen proomukuljetuksen osuutta metsähakkeen paremman tiiviyden ja käsiteltävyyden perusteella. Logistiikkajärjestelmiä pitää kehittää tapauskohtaisesti käyttöpaikan tarpeet ja olosuhteet huomioon ottaen. Metsäpolttoaineiden vesitiekuljetuksen sisältämän logistiikan liiketoimintamallien vertailussa arvioitiin vaihtoehtoiset ulkoistetut toimintamallit paremmaksi kuin nykyinen urakointimalli. Tämä mahdollistaa paremman metsähakkeen saatavuuden ja logistiikan tehokkuuden lastausterminaaleissa. Terminaalitoiminnot ja proomukuljetukset lisäävät uusia liiketoimintamahdollisuuksia ja mahdollistavat metsäpolttoaineiden
Resumo:
Tämän työn tavoitteena on analysoida Vaasan Sähköverkko Oy:n keskijänniteverkon nykytila sekä selvittää verkon kehittämisen suuntaviivoja. Nykytilan määrityksessä selvitetään kuormitettavuusasteet, jännitteenalenemat, häviöt oiko- ja maasulkusuojauksen toimivuus sekä keskeytyskustannukset. Nykytilan määrityksen apuna käytettiin verkkotietojärjestelmä Xpowerin tehojako-, oikosulku- ja maasulkulaskentoja. Nykytila on määritetty sekä normaalissa kytkentätilanteessa, että tilanteessa jossa yksi sähköasema kerrallaan on poissa käytöstä. Nykytilan määrityksen perusteella voidaan todeta, että normaalissa kytkentätilanteessa keskijänniteverkko täyttää suurilta osin sille asetetut tekniset reunaehdot, jotka ovat jännitteenalenema, kuormitettavuus, oikosulkukestoisuus sekä oiko- ja maasulkusuojauksen havahtuvaisuus. Jotta reunaehdot toteutuisivat kokonaisuudessaan, tulee oikosulkukestottomien lähtöjen releasetteluja muuttaa tai vaihtaa oikosulkukestottomat johto-osuudet suurempi poikkipintaiseen johtimeen. Nykytilan määrityksen perusteella neljän päämuuntajan kuormitettavuusaste on yli 90 %, joten näiden asemien alueiden kehitystä tulee tarkkailla. Sähköasemien korvaustarkastelun perusteella viiden sähköaseman korvaus tuottaa ongelmia jo nykyisillä huippukuormilla. Työssä tehtyjen selvitystöiden perusteella Vaasan Sähköverkko Oy:n keskijänniteverkkoon lisättiin 10 maastokatkaisijaa sekä selvitettiin verkon mahdollisia tulevaisuuden kehittämisen suuntaviivoja.
Resumo:
When using appropriate inflation pressures and load capacity (ballast), it may obtain a higher yield and prolongation of the life of the tire, besides it may minimize the problems of loss of traction, increased slippage and fuel consumption. This study aimed to evaluate the fuel consumption of a tractor operating with new and worn tires in three conditions of ballasting and three inflation pressures, when driving on compacted soil with vegetation cover. The experiment was conducted at the experimental unit from the Department of Animal Science, Federal University of Lavras, state of Minas Gerais, Brazil, in an agricultural soil compacted by cattle trampling and with vegetation cover. It was used a tractor 4x2 with front wheel assist, of a 65.62 kW engine power. The tires were of R1 type, diagonal (front: 12.4 to 24; and rear: 18.4 to 30), the average height of the clutches of the new tires were 0.3 and 0.35 m for front and rear tires, respectively, and for the worn tires were 0.018 and 0.0045 m, for the front and the rear tires, respectively. The results showed advantages for the tractor equipped with new tires.
Resumo:
ABSTRACT The power consumption and load capacity of agricultural machines have grown and the effects of pressure on the soil by tires have been still little investigated. In concern with sustainable development, the relationship machine-tire-soil must be in balance to give more consistency on the best use of tires for a given load. This study aimed to evaluate four tires of two constructive types, the bias belted tires and radial tires, both with respective rim diameters of 22.5 and 26.5 inches with variables measuring the footprint, elastic deformation, sinkage and resistance to penetration. A hydraulic press with an attachment shaft for tire mounting and a box of soil in which the tire has been imposed on a load of 53.00 kN using nominal pressures recommended by the tire manufacturer. The radial construction tire with rim diameter of 26.5 inches obtained less sinkage and resistance to penetration; however, greater elastic deformation and footprint compared to other tires. The bias-belted tire with 22.5-inch rim presented the highest resistance to penetration and the lowest elastic deformation.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
Resumo:
A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed
Resumo:
The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The search for an adequate destination to the tires without use is a problem for many countries. The use of tire rubber in concrete through the partial substitution of the small aggregate has for objective the withdrawal of this material of the environment besides serving as alternative material in places that present sand scarcity. However, to use this type of concrete in civil construction it's necessary to verify its structural behavior. The behavior of the adherence enters the bar of armor and the concrete surrounding it has decisive importance with relation to the load capacity of the structures of reinforced concrete. In this context, this work presents, argues and evaluates the results of the experimental studies for determination of the adherence tension according to pulling up assays pull-out normalized for CEB RC6 and also related in the ASTM C-234 in concrete with and without rubber residues. Armors of nominal diameter of 10,0; 12,5 and 16 mm had been used and concrete contend 10% of rubber fibres in substitution to the sand in volume.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)