928 resultados para Little Kennebec Bay
Resumo:
Macrobrachium amazonicum é o crustáceo dulcícola mais frequentemente consumido pelas populações ribeirinhas da Amazônia. Entretanto, apesar de sua relativa abundância e vasto conhecimento da espécie a partir de dados de cultivo, pouco se conhece sobre sua biologia no ambiente natural, especialmente quanto à forma de utilização de canais fortemente influenciados pelas marés. Amostras desse camarão foram coletadas em setembro/06 (período seco) e março/07 (período chuvoso), em dois canais perenes da Baía do Guajará, Pará, utilizando armadilhas (matapis) como as utilizadas pelos pescadores locais para identificar a distribuição espacial dos organismos. Os canais de maré são utilizados por camarões de todos os tamanhos nas duas estações do ano, inclusive para a reprodução. A maior abundância de indivíduos da espécie foi encontrada no período seco, nas áreas a montante dos canais. Postula-se que a abundante matéria orgânica alóctone e a busca de locais protegidos podem ser os fatores que explicam a concentração da abundância e da atividade reprodutiva nas áreas a montante dos canais.
Resumo:
Relatively little is known about the distribution and seasonal movement patterns of shortnose sturgeon Acipenser brevirostrum and Atlantic sturgeon Acipenser oxyrinchus oxyrinchus occupying rivers in the northern part of their range. During 2006 and 2007, 40 shortnose sturgeon (66-113.4 cm fork length [FL]) and 8 Atlantic sturgeon (76.2-166.2 cm FL) were captured in the Penobscot River, Maine, implanted with acoustic transmitters, and monitored using an array of acoustic receivers in the Penobscot River estuary and Penobscot Bay. Shortnose sturgeon were present year round in the estuary and overwintered from fall (mid-October) to spring (mid-April) in the upper estuary. In early spring, all individuals moved downstream to the middle estuary. Over the course of the summer, many individuals moved upstream to approximately 2 km of the downstream-most dam (46 river kilometers [rkm] from the Penobscot River mouth [rkm 0]) by August. Most aggregated into an overwintering site (rkm 36.5) in mid-to late fall. As many as 50% of the tagged shortnose sturgeon moved into and out of the Penobscot River system during 2007, and 83% were subsequently detected by an acoustic array in the Kennebec River, located 150 km from the Penobscot River estuary. Atlantic sturgeon moved into the estuary from the ocean in the summer and concentrated into a 1.5-km reach. All Atlantic sturgeon moved to the ocean by fall, and two of these were detected in the Kennebec River. Although these behaviors are common for Atlantic sturgeon, regular coastal migrations of shortnose sturgeon have not been documented previously in this region. These results have important implications for future dam removals as well as for rangewide and river-specific shortnose sturgeon management.
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.
Resumo:
This paper presents a geotechnical characterization of the glacigenic sediments in Prydz Bay, East Antarctica, based on the shipboard physical properties data obtained during Leg 119, combined with results of land-based analyses of 24 whole-round core samples. Main emphasis is placed on the land-based studies, which included oedometer consolidation tests, triaxial and simple shear tests for undrained shear strength, permeability tests in oedometer and triaxial cell, Atterberg limits, and grain-size analyses. The bulk of the tested sediments comprise overconsolidated diamictites of a relatively uniform lithology. The overconsolidation results from a combination of glacial loading and sediment overburden subsequently removed by extensive glacial erosion of the shelf. This leads to downhole profiles of physical properties that have been observed not to change as a function of the thickness of present overburden. A number of fluctuations in the parameters shows a relatively systematic trend and most likely results from changes in the proximity to the ice sheet grounding line in response to variations in the glacial regime. Very low permeabilities mainly result from high preconsolidation stresses (Pc'). Pc' values up to 10,000 kPa were estimated from the oedometer tests, and empirical estimates based on undrained shear strengths (up to 2500 kPa) indicate that the oedometer results are conservative. The diamictites generally classify as inactive, of low to medium plasticity, and they consolidate with little deformation, even when subjected to great stresses. This is the first report of geotechnical data from deep boreholes on the Antarctic continental shelf, but material of similar character can also be expected in other areas around the Antarctic.
Resumo:
In order to gain insights into species-level behavioural responses to the physical environment, it is necessary to obtain information from various populations and at all times of year. We analysed the influences of physical environmental parameters on the mid-summer dive behaviour of Weddell seals (Leptonychotes weddellii) from a little-known population at Atka Bay, Antarctica. Dive depth distributions followed a typical bimodal pattern also exhibited by seals from other populations and seals targeted both shallow water layers of <50 m and depths near the seafloor. Increased stratification of temperature layers within the water column resulted in increased forage efforts by the seals through relatively high numbers of dives to the seafloor, as well as forage effort associated with shallow dives. We interpret these behavioural responses to be due to increased water temperature stratification resulting in the concentration of prey species in particular depth layers.
Resumo:
Seabirds feed heavily on Arctic cod Boreogadus saida during the summer in the Canadian Arctic but little is known of the interactions among birds while foraging and the factors that drive feeding behaviour. The objective of this study was to describe the relationship between seabirds and Arctic cod in a productive feeding area distant from breeding colonies. Transect surveys were completed using standardized count protocols to determine the density of seabirds in Allen Bay, Cornwallis Island, Nunavut. Shore-based observation sites determined seabird foraging behaviour associated with the presence of schools and environmental variables. The density of birds (156 bird/km**2) was high compared to that of other locations in the Canadian Arctic. Several bird species were more active early in the morning and with winds from the south, possibly due to an increase in Arctic cod feeding on zooplankton at the surface. Northern fulmars Fulmarus glacialis and black-legged kittiwakes Rissa tridactyla captured Arctic cod directly from the water; however, they lost nearly 25% of captures to glaucous gulls Larus hyperboreus and parasitic jaegers Stercorarius parasiticus. These kleptoparasitic seabirds benefited the most in Allen Bay obtaining as much as 8 times more Arctic cod than species capturing cod directly. Northern fulmars captured 3 times more Arctic cod from schools, and black-legged kittiwakes captured similar proportions of schooling and non-schooling cod. We conclude that non-schooling Arctic cod are as important as schooling cod as an energy source for seabirds in nearshore areas, such as Allen Bay, during the summer.
Resumo:
Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical chart of the bay of Narraganset in the province of New England : with all the isles contained therein, among which Rhode Island and Connonicut have been particularly surveyed, shewing the true position & bearings of the banks, shoals, rocks &c. as likewise the soundings, to which have been added the several works & batteries raised by the Americans, taken by order of the principal farmers on Rhode Island, by Charles Blaskowitz. It was published in 1777 by Wm. Faden. Scale [ca. 1:50,000]. Nautical chart showing American Revolution military defenses and points of interest. Covers the Narraganset Bay region, Rhode Island. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Rhode Island State Plane Coordinate System (Feet) (FIPS 3800). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, selected buildings, farms, military defenses and structures, drainage, and more. Relief shown by hachures. Depths shown by soundings and form lines. Includes text, "References to the batteries," and "A list of the principal farms in Rhode Island." This layer is part of a selection of digitally scanned and georeferenced historic maps of New England from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 2, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 2 of 6 total images of the six sheet source map, representing the southeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 1, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 1 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Geological observations, using "free-diving" techniques (Figure I) were made in September, 1960 and March 1961 along two continuous profiles in the outer Kiel Harbor, Germany and at several other spot locations in the Western Baltic Sea. A distinct terrace, cut in Pleistocene glacial till, was found that was covered with varying amounts and types of recent deposits. Hand samples were taken of the sea-floor sediments and grainsize distribution determined for both the sediment as a whole and for its heavy mineral fraction. From the Laboratory and Field observations it was possible to recognize two distinct types of sand; Type I, Sand resulting from transportation over a long period of time and distance and Type 11, Sand resulting from little transportation and found today near to xvhere it was formed. Several criterea related to the agent of movement could be used to classify the nature of the sediment; (1) undisturbed (the sediment Cover of the Pleistocene Terrace is essentially undisturbed), (2) mixed by organisms, (3) transported by water movements (sediment found with ripple marks, etc., and (4) "Scoured" (the movement of individual particles of sediment from around larger boulders causes a slow downward movement or "Creeping" which is due to both the force of gravity and bottom currents. These observations and laboratory studies are discussed concerning their relationship to the formation of residual sediments, the direction of sand transportation, and the intensive erosion on the outer edge of the wave-cut platform found in this part of the Baltic Sea.
Resumo:
Rabbitfish Siganus fuscescens preferences for Lyngbya majuscula collected from three bloom locations in Moreton Bay, Queensland, Australia, were tested along with a range of local plant species in the laboratory. Consumption of L. majuscula by fish did not differ between wild and captive-bred fish (P = 0.152) but did differ between bloom location (P = 0.039). No relationship was found between consumption rates and lyngbyatoxin-a concentration (r(2) = 0.035, P = 0.814). No correlation existed between C : N and proportion of food consumed when all food types were analysed statistically, whereas a clear correlation was observed when L. majuscula was removed from the calculations. In simulated bloom conditions, fish avoided ingestion of L. majuscula by feeding through gaps in the L. majuscula coverage. Both wild and captive-bred S. fuscescens showed a distinct feeding pattern in 10 day no-choice feeding assays, with less L. majuscula being consumed than the preferred red alga Acanthophora spicifera. Lyngbya majuscula however, was consumed in equal quantities to A. spicifera by wild S. fuscescens when lyngbyatoxin-a was not detectable. Wild fish probably do not preferentially feed on L. majuscula when secondary metabolites are present and are not severely impacted by large L. majuscula blooms in Moreton Bay. Furthermore, poor feeding performance in both captive-bred and wild S. fuscescens suggests that they would exert little pressure as a top-down control agent of toxic L. majuscula blooms within Moreton Bay. (c) 2006 The Fisheries Society of the British Isles.
Resumo:
Subtropical estuaries have received comparatively little attention in the study of nutrient loading and subsequent nutrient processing relative to temperate estuaries. Australian estuaries are particularly susceptible to increased nutrient loading and eutrophication, as 75% of the population resides within 200 km of the coastline. We assessed the factors potentially limiting both biomass and production in one Australian estuary, Moreton Bay, through stoichiometric comparisons of nitrogen (N), phosphorus (P), silicon (Si), and carbon (C) concentrations, particulate compositions, and rates of uptake. Samples were collected over 3 seasons in 1997-1998 at stations located throughout the bay system, including one riverine endmember site. Concentrations of all dissolved nutrients, as well as particulate nutrients and chlorophyll, declined 10-fold to 100-fold from the impacted western embayments to the eastern, more oceanic-influenced regions of the bay during all seasons. For all seasons and all regions, both the dissolved nutrients and particulate biomass yielded N : P ratios < 6 and N : Si ratios < 1. Both relationships suggest strong limitation of biomass by N throughout the bay. Limitation of rates of nutrient uptake and productivity were more complex. Low C : N and C : P uptake ratios at the riverine site suggested light limitation at all seasons, low N : P ratios suggested some degree of N limitation and high N : Si uptake ratios in austral winter suggested Si limitation of uptake during that season only. No evidence of P limitation of biomass or productivity was evident.
Resumo:
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.