720 resultados para Lithium-ion Battery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans cette thèse nous démontrons le travail fait sur deux matériaux de cathodes pour les piles lithium-ion. Dans la première partie, nous avons préparé du phosphate de fer lithié (LiFePO4) par deux méthodes de lithiation présentées dans la littérature qui utilisent du phosphate de fer (FePO4) amorphe comme précurseur. Pour les deux méthodes, le produit obtenu à chaque étape de la synthèse a été analysé par la spectroscopie Mössbauer ainsi que par diffraction des rayons X (DRX) pour mieux comprendre le mécanisme de la réaction. Les résultats de ces analyses ont été publiés dans Journal of Power Sources. Le deuxième matériau de cathode qui a été étudié est le silicate de fer lithié (Li2FeSiO4). Une nouvelle méthode de synthèse a été développée pour obtenir le silicate de fer lithié en utilisant des produits chimiques peu couteux ainsi que de l’équipement de laboratoire de base. Le matériau a été obtenu par une synthèse à l’état solide. Les performances électrochimiques ont été obtenues après une étape de broyage et un dépôt d’une couche de carbone. Un essai a été fait pour synthétiser une version substituée du silicate de fer lithié dans le but d’augmenter les performances électrochimiques de ce matériau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layer-by-layer (LbL) films from K(2)Nb(6)O(17)(2-) and polyallylamine (PAH) and dip-coating films of H(2)K(2)Nb(6)O(17) were prepared on a fluorine-doped tin-oxide (FTO)-coated glass. The atomic force microscopy (AFM) images were carried out for morphological characterization of both materials. The real surface area and the roughness factor were determined on the basis of pseudocapacitive processes involved in the electroreduction/electrooxidation of gold layers deposited on these films. Next, lithium ion insertion into these materials was examined by means of electrochemical and spectroelectrochemical measurements. More specifically, cyclic voltammetry and current pulses under visible light beams were used to investigate mass transport and chromogenic properties. The lithium ion diffusion coefficient (D(Li)) within the LbL matrix is significantly higher than that within the dip-coating film, ensuring high storage capacity of lithium ions in the self-assembled electrode. Contrary to the LbL film, the potentiodynamic profile of absorbance change (Delta A) as a function of time is not similar to that obtained in the case of current density for the dip-coating film. Aiming at analyzing the rate of the coloration front associated with lithium ion diffusion, a spectroelectrochemical method based on the galvanostatic intermittent titration technique (GITT) was employed so as to determine the ""optical"" diffusion coefficient (D(op)). In the dip-coating film, the method employed here revealed that the lithium ion rate is higher in diffusion pathways formed from K(2)Nb(6)O(17)(2-) sites that contribute more significantly to Delta A. Meanwhile, the presence of PAH contributed to the increased ionic mobility in diffusion pathways in the LbL film, with low contribution to the electrochromic efficiency. These results aided a better understanding of the potentiodynamic profile of the temporal change of absorbance and current density during the insertion/deinsertion of lithium ions into the electrochromic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, cheap and versatile, polyol-mediated fabrication method has been extended to the synthesis of tin oxide nanoparticles on a large scale. Ultrafine SnO2 nanoparticles with crystallite sizes of less than 5 nm were realized by refluxing SnCl2 . 2H(2)O in ethylene glycol at 195 degrees C for 4 h under vigorous stirring in air. The as-prepared SnO2 nanoparticles exhibited enhanced Li-ion storage capability and cyclability, demonstrating a specific capacity of 400 mAh g(-1) beyond 100 cycles. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer electrolytes with a rigid backbone and a soft side chain structure. Moreover the novel material should be based on cheap substrates and its synthesis should not be complicated aiming at low overall costs. The new materials are based on hydroxypropylcellulose and oligoethyleneoxide derivatives as starting materials. The grafting of the oligoethyleneoxide side chains onto the cellulose was carried out following two synthetic methods. One is based on a bromide derivative and another based on p-toluolsulfonyl as a leaving group. The side chain reagents were prepared form tri(ethylene glycol) monoethyl ether. In order to improve the mechanical properties the materials were crosslinked. Two different conceptions have been engaged based on either urethane chemistry or photosensitive dimethyl-maleinimide derivatives. PEO - graft - cellulose derivatives with a high degree of substitution between 2,9 and 3,0 were blended with lithium trifluoromethane-sulfonate, lithium bis(trifluorosulfone)imide and lithium tetrafluoroborate. The molar ratios were in the range from 0,02 to 0,2 [Li]/[O]. The products have been characterized with nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and laserlight scattering (LS) with respect to their degree of substitution and molecular weight. The effect of salt concentration on ionic conductivity, thermal behaviour and morphology has been investiga-ted with impedance spectroscopy, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The crosslinking reactions were controlled with dynamic mechanical analysis (DMS). The degree of substitution of our products is varying between 2,8 and 3,0 as determined by NMR. PEO - graft - cellulose derivatives are highly viscous liquids at room temperature with glass transition temperatures around 215 K. The glass transition temperature for the Lithium salt complexes of PEO - graft - cellulose deri-vatives increase with increasing salt content. The maximum conductivity at room temperature is about 10-4 and at 100°C around 10-3 Scm-1. The presence of lithium salt decreases the thermal stability of the complexes in comparison to pure PEO - graft - cellulose derivatives. Complexes heated over 140 – 150°C completely lose their ionic conductivity. The temperature dependence of the conductivity presented as Arrhenius-type plots for all samples is similar in shape and follows a VTF behaviour. This proofs that the ionic transport is closely related to the segmental motions of the polymer chains. Novel cellulose derivatives with grafted oligoethylen-oxide side chains with well-defined chemical structure and high side chain grafting density have been synthesized. Cellulose was chosen as stiff, rod like macromolecule for the backbone while oligoethylen-oxides are chosen as flexible side chains. A maximum grafting density of 3.0 have been obtained. The best conductivity reaches 10-3 Scm-1 at 100°C for a Li-triflate salt complex with a [Li]/[O] ratio of 0.8. The cross-linked complexes containing the lithium salts form elastomeric films with convenient mechanical stability. Our method of cellulose modification is based on relatively cheap and commercially available substrates and as such appears to be a promising alternative for industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the well-posedness of a mathematical model that is used in the literature for the simulation of lithium-ion batteries. First, a mathematical model based on a macrohomogeneous approach is presented, following previous work. Then it is shown, from a physical and a mathematical point of view, that a boundary condition widely used in the literature is not correct. Although the errors could be just sign typos (which can be explained as carelessness in the use of d/dx versus d/dn, with n the outward unit vector) and authors using this model probably use the correct boundary condition when they solve it in order to do simulations, readers should be aware of the right choice. Therefore, the deduction of the correct boundary condition is done here, and a mathematical study of the well-posedness of the corresponding problem is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of cobalt coordination frameworks (Co-CPs) with a two-dimensional morphology is demonstrated by a solvothermal method. The morphology of the Co-CPs has been controlled by various solvothermal conditions. The two-dimensional nanostructures agglomerated by Co3O4 nanoparticles remained after the pyrolysis of the Co-CPs. The as-synthesized Co3O4 anode material is characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements. The morphology of Co3O4 plays a crucial role in the high performance anode materials for lithium batteries. The Co3O4 nanoparticles with opened-book morphology deliver a high capacity of 597 mA h g-1 after 50 cycles at a current rate of 800 mA g-1. The opened-book morphology of Co3O4 provides efficient lithium ion diffusion tunnels and increases the electrolyte/Co3O4 contact/interfacial area. At a relatively high current rate of 1200 mA g-1, Co3O4 with opened-book morphology delivers an excellent rate capability of 574 mA h g-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous tin films as anode for lithium-ion batteries are electrodeposited on graphite paper. Homogeneous tin films with significant void space accommodate the volume change during tin lithiation/delithiation. Through adjusting the electrodeposition currents and time, the morphologies and void space of tin films on graphite paper are controllable. At fixed electrodeposition current densities, the prolonged electrodeposition time plays the role in growing big tin particles and resulting the disappearance of void space among tin particles. The increased electrodeposition current plays the role to increase the quantity of tin seeds in thickness of tin film, and the void space among tin particles remains but the thick film limits its electrochemical performance. The tin films electrodeposited at an optimized current densities and for an optimized electrodeposition time, present the best electrochemical performance, because the tin nanoparticles are well dispersed on graphite substrate including void space. The tin film electrodeposited at 0.2 A cm-2 for 2 min shows the capacity of 1.0 mAh cm-2 after 50 charge/discharge cycles. The void space of tin film is very important for the best capacity and cyclic ability. The metallic tin film produced at 0.4 A cm-2 for 3 min remains the uniform and microporous structure after charge/discharge for 50 cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in the electric & hybrid electric vehicles and rapid developments in the electronic devices have increased the demand for high power and high energy density lithium ion batteries. Graphite (theoretical specific capacity: 372 mAh/g) used in commercial anodes cannot meet these demands. Amorphous SnO2 anodes (theoretical specific capacity: 781 mAh/g) have been proposed as alternative anode materials. But these materials have poor conductivity, undergo a large volume change during charging and discharging, large irreversible capacity loss leading to poor cycle performances. To solve the issues related to SnO2 anodes, we propose to synthesize porous SnO2 composites using electrostatic spray deposition technique. First, porous SnO2/CNT composites were fabricated and the effects of the deposition temperature (200, 250, 300 °C) & CNT content (10, 20, 30, 40 wt %) on the electrochemical performance of the anodes were studied. Compared to pure SnO2 and pure CNT, the composite materials as anodes showed better discharge capacity and cyclability. 30 wt% CNT content and 250 °C deposition temperature were found to be the optimal conditions with regard to energy capacity whereas the sample with 20% CNT deposited at 250 °C exhibited good capacity retention. This can be ascribed to the porous nature of the anodes and the improvement in the conductivity by the addition of CNT. Electrochemical impedance spectroscopy studies were carried out to study in detail the change in the surface film resistance with cycling. By fitting EIS data to an equivalent circuit model, the values of the circuit components, which represent surface film resistance, were obtained. The higher the CNT content in the composite, lower the change in surface film resistance at certain voltage upon cycling. The surface resistance increased with the depth of discharge and decreased slightly at fully lithiated state. Graphene was also added to improve the performance of pure SnO2 anodes. The composites heated at 280 °C showed better energy capacity and energy density. The specific capacities of as deposited and post heat-treated samples were 534 and 737 mAh/g after 70 cycles. At the 70th cycle, the energy density of the composites at 195 °C and 280 °C were 1240 and 1760 Wh/kg, respectively, which are much higher than the commercially used graphite electrodes (37.2–74.4 Wh/kg). Both SnO2/CNTand SnO2/grapheme based composites with improved energy densities and capacities than pure SnO2 can make a significant impact on the development of new batteries for electric vehicles and portable electronics applications.