456 resultados para Lipoproteins, IDL
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
Clinical epidemiological studies have revealed relatively weak, yet statistically significant, associations between dyslipidemia/dyslipoproteinemia and diabetic retinopathy (DR). Recent large interventional studies, however, demonstrated an unexpectedly robust efficacy of fenofibrate on the development of DR, possibly independent of plasma lipids. To unify the apparent discrepancies, we hypothesize that plasma lipoproteins play an indirect but important role in DR, contingent on the integrity of the blood-retina-barrier (BRB). In retinas with an intact BRB, plasma lipoproteins may be largely irrelevant; however, important effects become operative after the BRB is impaired in diabetes, leading to lipoprotein extravasation and subsequent modification, hence toxicity to the neighbouring retinal cells. In this hypothesis, BRB leakage is the key, plasma lipoprotein concentrations mainly modulate its consequences, and fenofibrate has intra-retinal actions. This review summarizes our current knowledge of the direct effects and mechanisms of modified lipoproteins on retinal cells and their potential contribution to the pathogenesis of DR.
Resumo:
Inflammatory atherosclerosis is increased in subjects with type 1 diabetes mellitus (T1DM). Normally high-density lipoproteins(HDL) protect against atherosclerosis; however, in the presence of serum amyloid-A- (SAA-) related inflammation this propertymay be reduced. Fasting blood was obtained from fifty subjects with T1DM, together with fifty age, gender and BMI matchedcontrol subjects. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Serum-hsCRP and serum-, HDL2-,and HDL3-SAA were measured by ELISAs. Compared to control subjects, SAA was increased in T1DM subjects, nonsignificantly inserum (P = 0.088), and significantly in HDL2 (P = 0.003) and HDL3 (P = 0.005). When the T1DM group were separated accordingto mean HbA1c (8.34%), serum-SAA and HDL3-SAA levels were higher in the T1DM subjects with HbA1c ≥ 8.34%, compared towhen HbA1c was <8.34% (P < 0.05). Furthermore, regression analysis illustrated, that for every 1%-unit increase in HbA1c, SAAincreased by 20% and 23% in HDL2 and HDL3, respectively, independent of BMI. HsCRP did not differ between groups (P > 0.05).This cross-sectional study demonstrated increased SAA-related inflammation in subjects with T1DM that was augmented by poorglycaemic control. We suggest that SAA is a useful inflammatory biomarker in T1DM, which may contribute to their increasedatherosclerosis risk.
Resumo:
Type 1 diabetes (T1DM) is associated with increased risk of macrovascular complications. We examined longitudinal associations of serum conventional lipids and nuclear magnetic resonance (NMR)-determined lipoprotein subclasses with carotid intima-media thickness (IMT) in adults with T1DM (n=455) enrolled in the Diabetes Control and Complications Trial (DCCT). Data on serum lipids and lipoproteins were collected at DCCT baseline (1983-89) and were correlated with common and internal carotid IMT determined by ultrasonography during the observational follow-up of the DCCT, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, at EDIC 'Year 1' (199-1996) and EDIC 'Year 6' (1998-2000). This article contains data on the associations of DCCT baseline lipoprotein profiles (NMR-based VLDL & chylomicrons, IDL/LDL and HDL subclasses and 'conventional' total, LDL-, HDL-, non-HDL-cholesterol and triglycerides) with carotid IMT at EDIC Years 1 and 6, stratified by gender. The data are supplemental to our original research article describing detailed associations of DCCT baseline lipids and lipoprotein profiles with EDIC Year 12 carotid IMT (Basu et al. in press) [1].
Resumo:
Aims/hypothesis: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.
Methods: To simulate permeation of plasma lipoproteins intoretinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS.Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.
Results: Intravitreal administration of N-LDL and PBS had noeffect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function,but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.
Conclusions/interpretation: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood retinal barriers are compromised.
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
OBJECTIF: La mauvaise clairance des lipoprotéines riches en triglycérides par le tissu adipeux blanc (TAB) entraîne l’hypertriglycéridémie, la résistance à l’insuline et la sécrétion hépatique d’apolipoprotéine B (apoB). Ce mémoire tente de déterminer si le LDL entraîne une clairance réduite des lipoprotéines riches en triglycérides par le TAB. MÉTHODES/RÉSULTATS: Suivant l’ingestion d’un repas riche en gras marqué à la trioléine-13C, des femmes obèses postménopausées avec apoB plasmatique élevé (> médiane 0.93 g/L, N=22, 98% sous forme de IDL/LDL) avaient une clairance réduite de triglycérides-13C et acides gras non-estérifiés-13C (AGNE), comparées à celles avec un apoB plus bas. L'aire sous la courbe à 6 heures des triglycérides-13C et AGNE-13C plasmatiques corrélait avec l'apoB, suggérant une moindre captation dans les tissus périphériques chez les femmes avec apoB élevé. Ex vivo, suivant une incubation de 4 heures de biopsies de TAB avec de la trioléine-3H, l’apoB des patientes corrélait négativement avec les lipides-3H intracellulaires. Le traitement des biopsies de TAB des participantes avec leur propre LDL menait à une réduction de l’hydrolyse et de la captation de la trioléine-3H et à l’accumulation d’AGNE-3H dans le médium. In vitro, le LDL inhibait l’activité de la LPL. De plus, les adipocytes 3T3-L1 différenciés en présence de LDL avaient une hydrolyse et une captation réduite des lipoprotéines riches en trioléine-3H. CONCLUSION: Ce mémoire suggère que le LDL diminue la clairance des lipoprotéines riches en triglycérides par le TAB humain, ce qui pourrait expliquer la résistance à l’insuline observée chez des sujets avec apoB élevé.
Resumo:
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Resumo:
Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background: Prolonged and exaggerated postprandial plasma triacylglycerol (TAG) concentrations are considered as an independent risk factor for coronary artery disease. Western populations eat many meals at regular intervals, and can be in a postprandial state for at least 17h of a 24h period. After consuming 2 meals an early plasma TAG peak has been observed after the second meal, the origin of which is unclear. Aim of the study: To test the hypothesis that the early TAG peak observed following sequential meals was of intestinal origin and represented fat derived from the previous meal. Methods: Postprandial plasma lipaemic responses of 17 healthy postmenopausal women were studied by giving a test breakfast followed by a lunch. Watermiscible retinyl palmitate (RP) was added to the breakfast, but not the lunch test meal. Plasma TAG, retinyl esters (RE) and apo B-48 were determined for a 10h period following breakfast. Results: In response to the test meals, RE, apo B-48 and TAG showed multiple peaks. Despite omission of RP from the lunch, RE showed an early peak response after ingestion of lunch in 15 of 17 subjects. The peak response after lunch of all three markers appeared significantly earlier compared with their respective peak responses after the breakfast (P < 0.0001). The area of RE response after lunch was significantly correlated with the RE lipaemic response to the breakfast (r = 0.67; P < 0.004) and to the fasting TAG concentration (r = 0.48; P < 0.05). Conclusions: Since the lunch did not contain RP, the distinctive second influx of RE after lunch was believed to have originated from the breakfast. This, together with the fact that all three markers showed an earlier response to the lunch than the breakfast, supports the view that ingestion of a second meal provokes entry of fat from the previous meal, from an as yet unidentified site (gut, enterocytes, lymph). The results indicate that the degree of TAG "storage" from previous meals might be a function of TAG tolerance and provide a possible site of regulation of the entry of fat into the systemic circulation.
Resumo:
It is well known that raised plasma triglycerides (TG) are positively linked to the development of coronary heart disease. However, triglycerides circulate in a range of distinct lipoprotein subtractions and the relative atherogenicity of these subtractions is not clear. In this study, three fractions of triglyceride rich lipoprotein (TRL) were isolated from normolipidaemic males according to their differing Svedberg flotation (S-f) rates: chylomicron (CM, S-f > 400), very low-density lipoprotein (VLDL)-1 (S-f 60-400) and VLDL-2 (S-f 20-60). These fractions were incubated with THP-1 monocyte-derived macrophages for determination of cholesterol and TG accumulation, in the presence and absence of the lipoprotein lipase (LPL) inhibitor orlistat. Expression of LDL receptor related protein (LRP) and apolipoprotein B48 receptor (apoB48R) was also examined in both differentiating monocytes, and monocyte-derived macrophages, incubated with TRL. VLDL-I caused a significantly greater accumulation of TG within macrophages compared to VLDL-2. Binding studies also tended to show a greater preference for VLDL-1. No change in expression of LRP or apoB48R was observed in fully differentiated macrophages incubated with VLDL-1, VLDL-2 or CM, although a greater expression of LRP mRNA was observed in differentiating monocytes exposed to VLDL-1, compared to those incubated with CM or VLDL-2. TG loading in response to all three TRL fractions was blocked by orlistat, suggesting that it is likely that the major pathway for uptake of TG was hydrolysis by LPL. Calculations suggested that direct uptake of particles accounts for between 12 and 25% of total TAG uptake. In conclusion, THP monocyte-derived macrophages demonstrate a preference for VLDL-1, both through the LPL pathway and by direct uptake of whole particles. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
High circulating levels of triglyceride-rich lipoproteins (TGRL) represent an independent risk factor for coronary artery disease. Here, we show that TGRL inhibit the efflux of cholesterol from 'foam cell' macrophages to lipid-poor apolipoprotein (apo) A1, and may thereby inhibit arterial reverse cholesterol transport and promote the formation of atherosclerotic lesions. Human (THP-1) monocyte-derived macrophages were pre-incubated (48h) with acetylated low-density lipoprotein (AcLDL) to provide a foam cell model of cholesterol efflux to apoA1. Pre-incubation of macrophage 'foam cells' with TGRL (0-200 mug/ml, 0-24 h) inhibited the efflux of exogenously radiolabelled ([H-3]), endogenously synthesised ([C-14]) and cellular cholesterol mass to lipid-poor apoA1, but not control medium, during a (subsequent) efflux period. This inhibition is dependent upon the length of prior exposure to, and concentration of, TGRL employed, but is independent of changes in intracellular triglyceride accumulation or turnover of the cholesteryl ester pool. Despite the negative impact of TGRL on cholesterol efflux, major proteins involved in this process-namely apoE, ABCA1, SR-B1 and caveolin-1-were unaffected by TGRL pre-incubation, suggesting that exposure to these lipoproteins inhibits an alternate, and possibly novel, anti-atherogenic pathway. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. Objective: We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Design: Ten normolipidemic men received in random order a mixed meal containing 50 L, of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)]. or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48. B-100, E. C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S-f) >400 S-f 60-400, and S-f 20 - 60. Results: Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S-f > 400 and S-f 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (Sf 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (Sf > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Conclusions: Differences in the composition of S-f > 400 and S-f 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.