934 resultados para Linear system solve
Resumo:
This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.
Resumo:
While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.
Resumo:
The proliferation of inexpensive workstations and networks has prompted several researchers to use such distributed systems for parallel computing. Attempts have been made to offer a shared-memory programming model on such distributed memory computers. Most systems provide a shared-memory that is coherent in that all processes that use it agree on the order of all memory events. This dissertation explores the possibility of a significant improvement in the performance of some applications when they use non-coherent memory. First, a new formal model to describe existing non-coherent memories is developed. I use this model to prove that certain problems can be solved using asynchronous iterative algorithms on shared-memory in which the coherence constraints are substantially relaxed. In the course of the development of the model I discovered a new type of non-coherent behavior called Local Consistency. Second, a programming model, Mermera, is proposed. It provides programmers with a choice of hierarchically related non-coherent behaviors along with one coherent behavior. Thus, one can trade-off the ease of programming with coherent memory for improved performance with non-coherent memory. As an example, I present a program to solve a linear system of equations using an asynchronous iterative algorithm. This program uses all the behaviors offered by Mermera. Third, I describe the implementation of Mermera on a BBN Butterfly TC2000 and on a network of workstations. The performance of a version of the equation solving program that uses all the behaviors of Mermera is compared with that of a version that uses coherent behavior only. For a system of 1000 equations the former exhibits at least a 5-fold improvement in convergence time over the latter. The version using coherent behavior only does not benefit from employing more than one workstation to solve the problem while the program using non-coherent behavior continues to achieve improved performance as the number of workstations is increased from 1 to 6. This measurement corroborates our belief that non-coherent shared memory can be a performance boon for some applications.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.
Resumo:
A scheduling method for implementing a generic linear QR array processor architecture is presented. This improves on previous work. It also considerably simplifies the derivation of schedules for a folded linear system, where detailed account has to be taken of processor cell latency. The architecture and scheduling derived provide the basis of a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition.
Resumo:
This paper investigates the linear degeneracies of projective structure estimation from point and line features across three views. We show that the rank of the linear system of equations for recovering the trilinear tensor of three views reduces to 23 (instead of 26) in the case when the scene is a Linear Line Complex (set of lines in space intersecting at a common line) and is 21 when the scene is planar. The LLC situation is only linearly degenerate, and we show that one can obtain a unique solution when the admissibility constraints of the tensor are accounted for. The line configuration described by an LLC, rather than being some obscure case, is in fact quite typical. It includes, as a particular example, the case of a camera moving down a hallway in an office environment or down an urban street. Furthermore, an LLC situation may occur as an artifact such as in direct estimation from spatio-temporal derivatives of image brightness. Therefore, an investigation into degeneracies and their remedy is important also in practice.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
The paper proposes a method of performing system identification of a linear system in the presence of bounded disturbances. The disturbances may be piecewise parabolic or periodic functions. The method is demonstrated effectively on two example systems with a range of disturbances.
Resumo:
This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.
Resumo:
Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a pole placement method using both the augmented Jacobian and the corresponding system transfer function matrices. From the manipulation of these matrices a straightforward approach results to get the coefficients of a non-linear system, whose solution gives the parameters of the stabilizers that can provide a pre-specified minimum damping to the system. (C) 2001 Elsevier B.V. Ltd. All rights reserved.