988 resultados para Limit Behaviour
Resumo:
This paper describes an experimental investigation of the behaviour of embedded retaining walls under seismic actions. Nine centrifuge tests were carried out on reduced-scale models of pairs of retaining walls in dry sand, either cantilevered or with one level of props near the top. The experimental data indicate that, for maximum accelerations that are smaller than the critical limit equilibrium value, the retaining walls experience significant permanent displacements under increasing structural loads, whereas for larger accelerations the walls rotate under constant internal forces. The critical acceleration at which the walls start to rotate increases with increasing maximum acceleration. No significant displacements are measured if the current earthquake is less severe than earthquakes previously experienced by the wall. The increase of critical acceleration is explained in terms of redistribution of earth pressures and progressive mobilisation of the passive strength in front of the wall. The experimental data for cantilevered retaining walls indicate that the permanent displacements of the wall can be reasonably predicted adopting a Newmark-type calculation with a critical acceleration that is a fraction of the limit equilibrium value.
Resumo:
We describe near-threshold high-resolution spectra and continuum resonance dynamical behaviour of all three stable hydrogen isotopic variants, and finally obtain improved values for the dissociation energies of hydrogen molecule and its ion. The second dissociation limit is determined by analysing the onset of the vibrational continuum.
Resumo:
Background: Hospital clinicians are increasingly expected to practice evidence-based medicine (EBM) in order to minimize medical errors and ensure quality patient care, but experience obstacles to information-seeking. The introduction of a Clinical Informationist (CI) is explored as a possible solution. Aims: This paper investigates the self-perceived information needs, behaviour and skill levels of clinicians in two Irish public hospitals. It also explores clinicians perceptions and attitudes to the introduction of a CI into their clinical teams. Methods: A questionnaire survey approach was utilised for this study, with 22 clinicians in two hospitals. Data analysis was conducted using descriptive statistics. Results: Analysis showed that clinicians experience diverse information needs for patient care, and that barriers such as time constraints and insufficient access to resources hinder their information-seeking. Findings also showed that clinicians struggle to fit information-seeking into their working day, regularly seeking to answer patient-related queries outside of working hours. Attitudes towards the concept of a CI were predominantly positive. Conclusion: This paper highlights the factors that characterise and limit hospital clinicians information-seeking, and suggests the CI as a potentially useful addition to the clinical team, to help them to resolve their information needs for patient care.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The self-consistent interaction between energetic particles and self-generated hydromagnetic waves in a cosmic ray pressure dominated plasma is considered. Using a three-dimensional hybrid magnetohydrodynamics (MHD)-kinetic code, which utilizes a spherical harmonic expansion of the Vlasov-Fokker-Planck equation, high-resolution simulations of the magnetic field growth including feedback on the cosmic rays are carried out. It is found that for shocks with high cosmic ray acceleration efficiency, the magnetic fields become highly disorganized, resulting in near isotropic diffusion, independent of the initial orientation of the ambient magnetic field. The possibility of sub-Bohm diffusion is demonstrated for parallel shocks, while the diffusion coefficient approaches the Bohm limit from below for oblique shocks. This universal behaviour suggests that Bohm diffusion in the root-mean-squared field inferred from observation may provide a realistic estimate for the maximum energy acceleration time-scale in young supernova remnants. Although disordered, the magnetic field is not self-similar suggesting a non-uniform energy-dependent behaviour of the energetic particle transport in the precursor. Possible indirect radiative signatures of cosmic ray driven magnetic field amplification are discussed.
Resumo:
Vertebroplasty is a minimally invasive surgical procedure, which requires efficacious percutaneous cement delivery via a cannulated needle to restore the strength and stiffness in osteoporotic vertebral bodies. Cement viscosity is understood to influence the injectability, cohesion and cement retention within the vertebral body. Altering the liquid to powder ratio modifies the viscosity of bone cement; however, the cement viscosity-response association between cement fill and augmentation of strength and stiffness is unknown. The aim of this study was to determine the relationship between viscosity, cement fill and the potential augmentation of strength and stiffness in an open pore foam structure that was representative of osteoporotic cancellous bone using an in vitro prophylactic vertebroplasty model. The results showed a strong linear correlation between compressive strength and stiffness augmentation with percentage cement fill, the extent of which was strongly dependent on the cement viscosity. Significant forces were required to ensure maximum delivery of the high viscosity cement using a proprietary screw-driven cement delivery technology. These forces could potentially exceed the normal human physical limit. Similar trends were observed when comparing the results from this study and previously reported cadaveric and animal based in vitro models.
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.
Resumo:
This work investigates limit cycle oscillations in the transonic regime. A novel approach to predict Limit Cycle Oscillations using high fidelity analysis is exploited to accelerate calculations. The method used is an Aeroeasltic Harmonic Balance approach, which has been proven to be efficient and able to predict periodic phenomena. The behaviour of limit cycle oscillations is analysed using uncertainty quantification tools based on polynomial chaos expansions. To improve the efficiency of the sampling process for the polynomial-chaos expansions an adaptive sampling procedure is used. These methods are exercised using two problems: a pitch/plunge aerofoil and a delta-wing. Results indicate that Mach n. variability is determinant to the amplitude of the LCO for the 2D test case, whereas for the wing case analysed here, variability in the Mach n. has an almost negligible influence in amplitude variation and the LCO frequency variability has an almost linear relation with Mach number. Further test cases are required to understand the generality of these results.
The role of societal norms in portion size related behaviour in Denmark and on the Island of Ireland
Resumo:
Purpose:
Social norms influence eating behavior, but little is known about their role in portion size-related behavior. This study
explored the role of social eating norms in Denmark (DK) and the Island of Ireland (IOI) in relation to portion size-related
behavior.
Methods:
In a survey DK (n=1063) and IOI (n=1012) respondents rated social eating norms (11 items) and portion size-related behavior
(3 items) on a 7-point scale (1=strongly disagree to 7=strongly agree). The 3 items relate to: 1) anticipating how
much will be eaten at the beginning of a meal, 2) clearing the plate, and 3) clearing the plate even when full. Sociodemographics
and eating attitudes (e.g. cognitive restraint) were measured as background variables
Results:
Two social eating factors were identified: The ‘limit intake’ norm (6 items) and the ‘plate cleaning’ norm (3 items). The
DK participants reported stronger ‘limit intake’ norms and weaker ‘plate cleaning’ norms than IOI. In both countries
females reported stronger ‘limit intake’ norms while males reported stronger ‘plate cleaning’ norms. In DK, age was
positively correlated with both social eating norm factors. The ‘limit intake’ norm had stronger association with anticipating
how much will be eaten at the beginning of a meal, but the ‘plate cleaning’ norm had stronger association with
clearing the plate. Only the ‘plate cleaning’ norm was associated with clearing the plate even when full.
Conclusions:
The social eating norms vary significantly between countries and genders. The ‘limit intake’ and ‘plate cleaning’ norms
play a role in consumers’ reported portion size-related behavior.
Resumo:
The interest in chromium (Cr) arises from the widespread use of this heavy metal in various industrial processes that cause its release as liquid, solid and gaseous waste into the environment. The impact of Cr on the environment and living organisms primarily depends on its chemical form, since Cr(III) is an essential micronutrient for humans, other animals and plants, and Cr(VI) is highly toxic and a known human carcinogen. This study aimed to evaluate if the electrodialytic process (ED) is an appropriate treatment for Cr removal, through a critical overview of Cr speciation, before and after the ED experiments, to assess possible Cr(III)-Cr(VI) interconversions during the treatment. ED was the treatment technique applied to two types of matrices containing Cr: chromate copper arsenate (CCA) contaminated soil and municipal solid waste incineration (MSWI) fly ash. In order to study Cr remediation, three EDR set-ups were used: a new set-up, the combined cell (2/3C or 3/2C), with three compartments, alternating current between two anodes and different initial experimental conditions, one set-up with three compartments (3C cell) and the other set-up with two compartments (2C cell). The Cr removal rates obtained in this study were between 10-36% for the soil, and 1-13% for the fly ash. The highest Cr removal rates were achieved in the 26 days experiments: 36% for the soil, 13% for the fly ash. Regarding the 13 days experiments, the highest Cr removal rates were attained with the 2/3C set-up: 24% for the soil, 5% for the fly ash. The analysis of Cr(VI) was performed before and after ED experiments to evaluate eventual changes in Cr speciation during the treatment. This analysis was conducted by two methods: USEPA Method 3060A, for the extraction of Cr(VI); and Hach Company Method 8023, for the detection of Cr(VI). Despite the differences in Cr total concentration, both matrices presented a similar speciation, with Cr(III) being the main species found and Cr(VI) less than 3% of Cr total, before and after the treatment. For fly ash, Cr(VI) was initially below the detection limit of the method and remained that way after the treatment. For soil, Cr(VI) decreased after the treatment. Oxidation of Cr(III) to Cr(VI) did not occur during the ED process since there was no increase in Cr(VI) in the matrices after the treatment. Hence, the results of this study indicate that ED is an appropriate technique to remediate matrices containing Cr because it contributes to Cr removal, without causing Cr(III)-Cr(VI) interconversions.
Resumo:
BACKGROUND: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.
Resumo:
Mature (clitellate) Eisenia andrei Bouche (ultra epigeic), Lumbricus rubellus Hoffmeister (epigeic), and Aporrectodea caliginosa (Savigny) (endogeic) earthworms were placed in soils treated with Pb(NO3)(2) to have concentrations in the range 1000 to 10 000 mg Pb kg(-1). After 28 days LC50(-95%confidence limit) (+95%confidence limit) values were E. andrei 5824(-361)(+898) mg Pb kg(-1), L. rubellus 2867(-193)(+145) mg Pb kg(-1) and A. caliginosa 2747(-304)(+239) mg Pb kg(-1) and EC50s for weight change were E. andrei 2841(-68)(+150) Pb kg(-1), L. rubellus 1303(-201)(+204) mg Pb kg(-1) and A. caliginosa 1208(-206)(+212) Mg Pb kg(-1). At any given soil Pb concentration, Pb tissue concentrations after 28 days were the same for all three earthworm species. In a soil avoidance test there was no difference between the behaviour of the different species. The lower sensitivity to Pb exhibited by E. andrei is most likely due to physiological adaptations associated with the modes of life of the earthworms, and could have serious implications for the use of this earthworm as the species of choice in standard toxicological testing. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
A body of research suggests that the provision of energy feedback information to building users can elicit significant energy reductions through behaviour change. However, most studies have focused on energy use in homes and the assessment of interventions and technologies, to the neglect of the non-domestic context and broader issues arising from the introduction of feedback technologies. To address this gap, a non-domestic case study explores the delivery of personalized energy feedback to office workers through a novel system utilizing wireless technologies. The research demonstrates advantages of monitoring occupancy and quantifying energy use from specific behaviours as a basis for effective energy feedback; this is particularly important where there are highly disaggregated forms of energy use and a range of locations for that activity to take place. Quantitative and qualitative data show that personalized feedback can help individuals identify energy reduction opportunities. However, the analysis also highlights important contextual barriers and issues that need to be addressed when utilizing feedback technologies in the workplace. If neglected, these issues may limit the effective take-up of feedback interventions.
Resumo:
A novel nanostructured composite, azide copper octa (3-aminopropyl)octasilsesquioxane (ASCA) was incorporated into a graphite paste electrode and the electrochemical studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E ) = 0.30 V and an irreversible process at 1.1 V (vs Ag/AgCl; NaCl 1.0 mol L-1 ; v = 20 mV s-1 ). The redox couple with (E ) = 0.30V presents an electrocatalytic response for determination of ascorbic acid. The modified electrode gives a linear range from 1.010-4 – 1.010-3 mol L-1 (r = 0.998) for the determination of ascorbic acid with detection limit of 6.910-5 mol L-1 and standard deviation of 2.3% for n = 3 . The amperometric sensitivity was 122.1 mA/mol L-1 for ascorbic acid. The application this electrode was tested and ascorbic acid in three commercial pharmaceutical product (Cebion, Cewin and Redoxon) have been determined.