871 resultados para Limb dimension
Resumo:
Reports of children and teachers taking transformative social action in schools are becoming rare. This session illustrates how teachers, while feeling the weight of accountability testing in schools, are active agents who can re-imagine literacy pedagogy to change elements of their community. It reports the critical dimensions of a movie-making unit with Year 5 students within a school reform project. The students filmed interviews with people in the local shops to gather lay-knowledge and experiences of the community. The short documentaries challenged stereotypes about what it is like to live in Logan, and critically identified potential improvements to public spaces in the local community. A student panel presented these multimodal texts at a national conference of social activists and community leaders. The report does not valorize or privilege local or lay knowledge over dominant knowledge, but argues that prescribed curriculum should not hinder the capacity for critical consciousness.
Resumo:
The quality of dried food is affected by a number of factors including quality of raw material, initial microstructure, and drying conditions. The structure of the food materials goes through deformations due to the simultaneous effect of heat and mass transfer during the drying process. Shrinkage and changes in porosity, microstructure and appearance are some of the most remarkable features that directly influence overall product quality. Porosity and microstructure are the important material properties in relation to the quality attributes of dried foods. Fractal dimension (FD) is a quantitative approach of measuring surface, pore characteristics, and microstructural changes [1]. However, in the field of fractal analysis, there is a lack of research in developing relationship between porosity, shrinkage and microstructure of different solid food materials in different drying process and conditions [2-4]. Establishing a correlation between microstructure and porosity through fractal dimension during convective drying is the main objective of this work.
Resumo:
This project was an observational study of outpatients following lower limb surgical procedures for removal of skin cancers. Findings highlight a previously unreported high surgical site failure rate. Results also identified four potential risk factors (increasing age, presence of leg pain, split skin graft and haematoma) which negatively impact on surgical site healing in this population.
Resumo:
Objective To quantitatively assess and compare the quality of life (QoL) of women with a self-reported diagnosis of lower limb lymphedema (LLL), to women with lower limb swelling (LLS), and to women without LLL or LLS following treatment for endometrial cancer. Methods 1399 participants in the Australian National Endometrial Cancer Study were sent a follow-up questionnaire 3–5 years after diagnosis. Women were asked if they had experienced swelling in the lower limbs and, if so, whether they had received a diagnosis of lymphedema by a health professional. The 639 women who responded were categorised as: Women with LLL (n = 68), women with LLS (n = 177) and women without LLL or LLS (n = 394). Multivariable-adjusted generalized linear models were used to compare women’s physical and mental QoL by LLL status. Results On average, women were 65 years of age and 4 years after diagnosis. Women with LLL had clinically lower physical QoL (M= 41.8, SE= 1.4) than women without LLL or LLS (M= 45.1, SE= 0.8, p = .07), however, their mental QoL was within the normative range (M= 49.6; SE= 1.1 p = 1.0). Women with LLS had significantly lower physical (M= 41.0, SE= 1.0, p = .003) and mental QoL (M= 46.8; SE= 0.8, p < .0001) than women without LLL or LLS (Mental QoL: M= 50.6, SE= 0.8). Conclusion Although LLL was associated with reductions in physical QoL, LLS was related to reductions in both physical and mental QoL 3-5 years after cancer treatment. Early referral to evidence-based lymphedema programs may prevent long-term impairments to women’s QoL.
Resumo:
We present a technique for delegating a short lattice basis that has the advantage of keeping the lattice dimension unchanged upon delegation. Building on this result, we construct two new hierarchical identity-based encryption (HIBE) schemes, with and without random oracles. The resulting systems are very different from earlier lattice-based HIBEs and in some cases result in shorter ciphertexts and private keys. We prove security from classic lattice hardness assumptions.
Resumo:
The aim of this research is to report initial experimental results and evaluation of a clinician-driven automated method that can address the issue of misdiagnosis from unstructured radiology reports. Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to disperse information resources and vast amounts of manual processing of unstructured information, a point-of-care accurate diagnosis is often difficult. A rule-based method that considers the occurrence of clinician specified keywords related to radiological findings was developed to identify limb abnormalities, such as fractures. A dataset containing 99 narrative reports of radiological findings was sourced from a tertiary hospital. The rule-based method achieved an F-measure of 0.80 and an accuracy of 0.80. While our method achieves promising performance, a number of avenues for improvement were identified using advanced natural language processing (NLP) techniques.
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
Digital learning has come a long way from the days of simple 'if-then' queries. It is now enabled by countless innovations that support knowledge sharing, openness, flexibility, and independent inquiry. Set against an evolutionary context this study investigated innovations that directly support human inquiry. Specifically, it identified five activities that together are defined as the 'why dimension' – asking, learning, understanding, knowing, and explaining why. Findings highlight deficiencies in mainstream search-based approaches to inquiry, which tend to privilege the retrieval of information as distinct from explanation. Instrumental to sense-making, the 'why dimension' provides a conceptual framework for development of 'sense-making technologies'.
Resumo:
Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
Lower extremities are particularly susceptible to injury in an under‐vehicle explosion. Operational fitness of military vehicles is assessed through anthropometric test devices (ATDs) in full‐scale blast tests. The aim of this study was to compare the response between the Hybrid‐III ATD, the MiL‐Lx ATD and cadavers in our traumatic injury simulator, which is able to replicate the response of the vehicle floor in an under‐vehicle explosion. All specimens were fitted with a combat boot and tested on our traumatic injury simulator in a seated position. The load recorded in the ATDs was above the tolerance levels recommended by NATO in all tests; no injuries were observed in any of the 3 cadaveric specimens. The Hybrid‐III produced higher peak forces than the MiL‐Lx. The time to peak strain in the calcaneus of the cadavers was similar to the time to peak force in the ATDs. Maximum compression of the sole of the combat boot was similar for cadavers and MiL‐Lx, but significantly greater for the Hybrid‐III. These results suggest that the MiL‐Lx has a more biofidelic response to under‐vehicle explosive events compared to the Hybrid‐III. Therefore, it is recommended that mitigation strategies are assessed using the MiL‐Lx surrogate and not the Hybrid‐III.
Resumo:
Until recently, sustainable development was perceived as essentially an environmental issue, relating to the integration of environmental concerns into economic decision-making. As a result, environmental considerations have been the primary focus of sustainability decision making during the economic development process for major projects, and the assessment and preservation of social and cultural systems has been arguably too limited. The practice of social impact and sustainability assessment is an established and accepted part of project planning, however, these practices are not aimed at delivering sustainability outcomes for social systems, rather they are designed to minimise ‘unsustainability’ and contribute to project approval. Currently, there exists no widely recognised standard approach for assessing social sustainability and accounting for positive externalities of existing social systems in project decision making. As a result, very different approaches are applied around the world, and even by the same organisations from one project to another. This situation is an impediment not only to generating a shared understanding of the social implications as related to major projects, but more importantly, to identifying common approaches to help improve social sustainability outcomes of proposed activities. This paper discusses the social dimension of sustainability decision making of mega-projects, and argues that to improve accountability and transparency of project outcomes it is important to understand the characteristics that make some communities more vulnerable than others to mega-project development. This paper highlights issues with current operational level approaches to social sustainability assessment at the project level, and asserts that the starting point for project planning and sustainability decision making of mega-projects needs to include the preservation, maintenance, and enhancement of existing social and cultural systems. It draws attention to the need for a scoping mechanism to systematically assess community vulnerability (or sensitivity) to major infrastructure development during the feasibility and planning stages of a project.
Resumo:
A high-level relationPopper dimension—( Exclusion dimension—( VC dimension—( between Karl Popper’s ideas on “falsifiability of scientific theories” and the notion of “overfitting”Overfitting in statistical learning theory can be easily traced. However, it was pointed out that at the level of technical details the two concepts are significantly different. One possible explanation that we suggest is that the process of falsification is an active process, whereas statistical learning theory is mainly concerned with supervised learningSupervised learning, which is a passive process of learning from examples arriving from a stationary distribution. We show that concepts that are closer (although still distant) to Karl Popper’s definitions of falsifiability can be found in the domain of learning using membership queries, and derive relations between Popper’s dimension, exclusion dimension, and the VC-dimensionVC dimension.
Resumo:
Background: The Lower Limb Functional Index (LLFI) is a relatively recently published regional outcome measure. The development article showed the LLFI had robust and valid clinimetric properties with sound psychometric and practical characteristics when compared to the Lower Limb Extremity Scale (LEFS) criterion standard. Objective: The purpose of this study was cross cultural adaptation and validation of the LLFI Spanish-version (LLFI-Sp) in a Spanish population. Methods: A two stage observational study was conducted. The LLFI was initially cross-culturally adapted to Spanish through double forward and single backward translation; then subsequently validated for the psychometric characteristics of validity, internal consistency, reliability, error score and factor structure. Participants (n = 136) with various lower limb conditions of >12 weeks duration completed the LLFI-Sp, Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and the Euroqol Health Questionnaire 5 Dimensions (EQ-5D-3 L). The full sample was employed to determine internal consistency, concurrent criterion validity, construct validity and factor structure; a subgroup (n = 45) determined reliability at seven days concurrently completing a global rating of change scale. Results: The LLFI-Sp demonstrated high but not excessive internal consistency (α = 0.91) and high reliability (ICC = 0.96). The factor structure was one-dimensional which supported the construct validity. Criterion validity with the WOMAC was strong (r = 0.77) and with the EQ-5D-3 L fair and inversely correlated (r = -0.62). The study limitations included the lack of longitudinal data and the determination of responsiveness. Conclusions: The LLFI-Sp supports the findings of the original English version as being a valid lower limb regional outcome measure. It demonstrated similar psychometric properties for internal consistency, validity, reliability, error score and factor structure.
Resumo:
Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.