647 resultados para Lignin peroxidise
Resumo:
• Stable isotope ratios of organic compounds are valuable tools for determining the geographical origin, identity, authenticity or history of samples from a vast range of sources such as sediments, plants and animals, including humans. • Hydrogen isotope ratios (d2H values) of methoxyl groups in lignin from wood of trees grown in different geographical areas were measured using compound-specificpyrolysis isotope ratio mass spectrometry analysis. • Lignin methoxyl groups were depleted in 2H relative to both meteoric water andwhole wood. A high correlation (r2=0.91) was observed between the d2 H valuesof the methoxyl groups and meteoric water, with a relatively uniform fractionation of –216±19 recorded with respect to meteoric water over a range of d2H values from –110 in northern Norway to + 20‰ in Yemen. Thus, woods from northernlatitudes can be clearly distinguished from those from tropical regions. By contrast, the d2H values of bulk wood were only relatively poorly correlated (r 2 = 0.47) with those of meteoric water. • Measurement of the d 2H values of lignin methoxyl groups is potentially a powerful tool that could be of use not only in the constraint of the geographical origin of lignified material but also in paleoclimate, food authenticity and forensic investigations.
Resumo:
In this study, the feasibility of using H3PO4-activated lignin for hexavalent chromium adsorption has been investigated. The composite of activated lignin was characterized using FTIR, XRD and SEM with EDAX analysis. It was observed that the pH had a strong effect on the adsorption capacity; adsorption of Cr(VI) was more favorable at acidic pH with maximum uptake at pH 2. The adsorption equilibrium data were best represented by Koble-Corrigan isotherm. The monolayer sorption capacity obtained from the Langmuir model was found to be 77.85 mg/g. Adsorption showed pseudo-second order rate kinetics and the process involving the rate-controlling step is complex as it involves both film and intraparticle diffusion processes. The NaOH desorbing agent was able to release approximately 84% of metal ions. Thermodynamic parameters showed that the sorption process is exothermic and non-spontaneous. The overall Cr(VI) retention on the activated lignin surface perhaps includes both the physical adsorption of Cr(VI) and the consequent reduction of Cr(VI) to Cr(III). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Surface reaction methodology was implicated in the optimization of hexavalent chromium removal onto lignin with respect to the process parameters. The influence of altering the conditions for removal of chromium(VI), for instance; solution pH, ionic strength, initial concentration, the dose of biosorbent, presence of other metals (Zn and Cu), presence of salts and biosorption-desorption studies, were investigated. It was found that the biosorption capacity of lignin depends on solution pH, with a maximum biosorption capacity for chromium at pH 2. Experimental equilibrium data were fitted to five different isotherm models by non-linear regression method, however, the biosorption equilibrium data were well interpreted by the Freundlich isotherm. The maximum biosorption capacities (q(max)) obtained using Dubinin-Radushkevich and Khan isotherms for Cr(VI) biosorption are 31.6 and 29.1 mg/g. respectively. Biosorption showed pseudo second order rate kinetics at different initial concentrations of Cr(VI). The intraparticle diffusion study indicated that film diffusion may be involved in the current study. The percentage removal of chromium on lignin decreased significantly in the presence of NaHCO3 and K2P2O7 salts. Desorption data revealed that nearly 70% of the Cr(VI) adsorbed on lignin could be desorbed using 0.1 M NaOH. It was evident that the biosorption mechanism involves the attraction of both hexavalent chromium (anionic) and trivalent chromium (cationic) onto the surface of lignin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H PO -acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol·L ), flow rate (1.0-3.1 cm ·min ), ionic strength (0.01-0.30 mmol·L ) and adsorbent mass (0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process. © 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP).
Resumo:
The use of model compounds in the development of selective lignin depolymerisation processes has been limited by the lack of complexity of these models compared with lignin itself. In this paper we report a convergent and efficient synthetic method for the flexible, multi-gram preparation of model lignin hexamers and octamers containing three of the most common connectivity motifs found within native lignin, namely ß-O-4', 5-5' and ß-5', which will be used to further the mechanistic understanding of lignin depolymerisation processes.
Resumo:
Lignocellulosic biomass pretreatment and the subsequent thermal conversion processes to produce solid, liquid, and gas biofuels are attractive solutions for today's energy challenges. The structural study of the main components in biomass and their macromolecular complexes is an active and ongoing research topic worldwide. The interactions among the three main components, cellulose, hemicellulose, and lignin, are studied in this paper using electronic structure methods, and the study includes examining the hydrogen bond network of cellulose-hemicellulose systems and the covalent bond linkages of hemicellulose-lignin systems. Several methods (semiempirical, Hartree-Fock, and density functional theory) using different basis sets were evaluated. It was shown that theoretical calculations can be used to simulate small model structures representing wood components. By comparing calculation results with experimental data, it was concluded that B3LYP/6-31G is the most suitable basis set to describe the hydrogen bond system and B3LYP/6-31G(d,p) is the most suitable basis set to describe the covalent system of woody biomass. The choice of unit model has a much larger effect on hydrogen bonding within cellulose-hemicellulose system, whereas the model choice has a minimal effect on the covalent linkage in the hemicellulose-lignin system. © 2011 American Chemical Society.
Resumo:
In this thesis, the production and characterization of ligninolytic enzymes using the fungi isolated from mangrove area are studied. The objective of the present work are isolation and screening of dye decolorizing micro-organisms from mangrove area, screening of the selected microorganisms for the production of lignin degrading enzymes, identification of the potent micro-organisms, characterization of the crude enzyme, lignin peroxidase, of the selected fungi—Aspergillus sp. SIP 11 and Penicillium sp. SIP 10 etc. This included the determination of the optimum pH, temperature, veratryl alcohol and H2O2 concentration. Besides the stability of crude LiP at different pHs and temperatures were studied. The immense applications, particularly in bioremediation, to which the lignin degrading micro-organisms could be used make this study important, the ascomycetes and deuteromycetes fungi, especially form the marine environment were studied with respect to their ligninolytic enzyme system making this study an initial step in unraveling the vast hidden potential of these microbes in bioremediation, the marine microbes are halophilic in nature which make them better suited to cope with the high salinity of industrial effluents thereby giving them added advantage in the filed of bioremediation. The thesis deals with the isolation and screening of lignin degrading enzyme-producing microbes from mangrove area. The identification of the most potent fungal isolates and characterization of LiP from these are also done.
Resumo:
The continually growing worldwide hazardous waste problem is receiving much attention lately. The development of cost effective, yet efficient methods of decontamination are vital to our success in solving this problem.Bioremediation using white rot fungi, a group of basidiomycetes characterized by their ability to degrade lignin by producing extracellular LiP, MnP and laccase have come to be recognized globally which is described in detail in Chapter 1.These features provide them with tremendous advantages over other micro-organisms.Chapter 2 deals with the isolation and screening of lignin degrading enzyme producing micoro-organisms from mangrove area. Marine microbes of mangrove area has great capacity to tolerate wide fluctuations of salinitie.Primary and secondary screening for lignin degrading enzyme producing halophilic microbes from mangrove area resulted in the selection of two fungal strains from among 75 bacteria and 26 fungi. The two fungi, SIP 10 and SIP ll, were identified as penicillium sp and Aspergillus sp respectively belonging to the class Ascomycetes .Specific activity of the purified LiP was 7923 U/mg protein. The purification fold was 24.07 while the yield was 18.7%. SDS PAGE of LiP showed that it was a low molecular weight protein of 29 kDa.Zymogram analysis using crystal violet dye as substrate confirmed the peroxidase nature of the purified LiP.The studies on the ability of purified LiP to decolorize different synthetic dyes was done. Among the dyes studied, crystal violet, a triphenyl methane dye was decolorized to the greatest extent.
Resumo:
Coir pith black liquor obtained as a dark brown filtrate from oxidative delignification needs to be decolourised before releasing to open environment. From this liquor industrially valuable lignin was recovered using acid precipitation method. ‘Biochar’ was produced by slow pyrolysis of coir pith at 500oC and 600oC. Water holding capacity and pH of the biochar were estimated. CHNS analysis was carried out to identify the nutrient profile. Structural characterization was done using FTIR and SEM Studies. Biochar produced at 600oC was found to be more suitable for decolourisation of the coir pith black liquor. FTIR analysis indicated peak changes while SEM analysis indicated surface area and porosity changes. Biochar decolourisation experiments were carried out on crude coir pith black liquor and also on lignin recovered coir pith black liquor.
Resumo:
Information on the distribution of dissolved Folin phenol active substances (FPAS) such as tannin and lignin in the seawater along the west coast of India is provided. Notable amounts of FPAS (surface concentrations: 80 f.1gll to 147 f.1gll and bottom concentrations: 80 f.1gll to 116 f.1gll) were detected in the seawater along the coast. The distribution pattern brings about a general depth-wise decrease. A seaward decrease was observed in the southern stations whereas reverse was the case in northern stations. A significant negative correlation was observed between FPAS concentration and dissolved oxygen in sub-surface samples. The appreciable amounts of FPAS detected in the coastal waters indicate the presence of organic matter principally originating from terrestrial (upland and coastal marsh) ecosystems in the marine environment. In this context, they may be used as tracers to determine the fate of coastalborn dissolved organic matter in the ocean and to determine directly the relationship between allochthonous and autochthonous organic matter
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Foram utilizados quatro cavalos castrados sem raça definida, distribuídos em blocos casualizados. Objetivou-se estudar a viabilização dos indicadores internos, celulose (CELi) e lignina indigestíveis (LIGi), para predizer a digestibilidade em cavalos. Os tratamentos consistiram na determinação da digestibilidade por método direto com a coleta total de fezes (CT) e indireto pelo uso CELi e LIGi obtidos pelas técnicas in situ (IS) na cavidade ruminal de bovinos e in vivo (IV) nos equinos por meio do saco de náilon móvel (SNM). A produção fecal e taxa de recuperação (p > 0,05) médios encontrados foram de 2,80 kg na MS e 101%, respectivamente. As estimativas dos CD dos nutrientes (p > 0,05) foram adequadamente preditos pela CELi e LIGi, obtidos in situ e in vivo, no qual os valores médios observados foram de 52,63, 54,17, 64,90, 43,73 e 98,28% para MS, MO, PB, FDN e Amido, respectivamente. Concluiu-se que a CELi e LIGi podem ser obtidas in vivo por meio do SNM em equinos, para predizer os coeficientes de digestibilidade de nutrientes, consumindo dieta mista.