966 resultados para Light-Curing of Dental Adhesives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite resin is a dental material susceptible to color change over time which limits the longevity of restorations made with this material. The influence of light curing units and different fluoride mouthrinses on superficial morphology and color stability of a nanofilled composite resin was evaluated. Specimens (N = 150) were prepared and polished. The experimental groups were divided according to the type of light source (halogen and LED) and immersion media (artificial saliva, 0.05% sodium fluoride solution-manipulated, Fluordent Reach, Oral B, Fluorgard). Specimens remained in artificial saliva for 24-h baseline. For 60 days, they were immersed in solutions for 1 min. Color readout was taken at baseline and after 60 days of immersion. Surface morphology was analyzed by Scanning Electron Microscopy (SEM) after 60 days of immersion. Color change data were submitted to two-way Analysis of Variance and Tukey tests (α = 0.05). Surface morphology was qualitatively analyzed. The factor light source presented no significant variability (P = 0.281), the immersion media, significant variability (P < 0.001) and interaction between factors, no significant variability (P = 0.050). According to SEM observations, no difference was noted in the surface of the specimens polymerized by different light sources, irrespective of the immersion medium. It was concluded that the light source did not influence the color stability of composite, irrespective of the immersion media, and among the fluoride solutions analyzed, Fluorgard was the one that promoted the greatest color change, however, this was not clinically perceptible. The immersion media did not influence the morphology of the studied resin. Microsc. Res. Tech. 77:941–946, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. Materials and Methods: One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm(2)). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 Subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey`s test and Dunnett`s test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). Results: No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). Conclusion: The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm(2), respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey`s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence of light-curing units (LCUs) on Knoop microhardness (KHN) of different composite resins formulations. Four LCUs, one Quartz-Tungsten-Halogen (QTH) for 20 s, one Argon-Ion-Laser (AL) for 10 s, one Plasma-Arc-Curing (PAC) for 9 s, and one Light-Emitting-Diode (LED) for 20 s, and three composite resins, nanofill and easy cure (Filtek (TM) Supreme), microhybrid and medium cure (Herculite XRV), and microfill and difficult cure (Heliomolar) were used. Discs (4 x 2 mm(2)) of each composite resin were divided in 12 Groups and KHN was measured at the top (T) and bottom (B) surfaces. Data were analyzed using two-way ANOVA and Tukey's test (p < 0.05). Top presented significantly higher KHN than bottom surface for all composite resins and LCUs tested. Statistical significant differences were observed among the LCUs. At the bottom surface QTH and LED presented higher KHN than PAC and LA. However, at the top surface PAC and LA presented similar results than QTH for nanofill and microhybrid composite resins. Different LCUs play an important effect on Knoop microhardness and the composite resin formulations were significant factor on the photosensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the polymerization effectiveness of a composite resin (Z-250) utilizing microhardness testing. In total, 80 samples with thicknesses of 2 and 4 mm were made, which were photoactivated by a conventional halogen light-curing unit, and light-curing units based on LED. The samples were stored in water distilled for 24 h at 37C. The Vickers microhardness was performed by the MMT-3 microhardness tester. The microhardness means obtained were as follows: G1, 72.88; G2, 69.35; G3, 67.66; G4, 69.71; G5, 70.95; G6, 75.19; G7, 72.96; and G8, 71.62. The data were submitted to an analysis of variance (ANOVA's test), adopting a significance level of 5%. The results showed that, in general, there were no statistical differences between the halogen and LED light-curing units used with the same parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the cohesive strength between composite and different light-curing characterizing materials (LCCM), which were prepared using the intrinsic technique.Materials and Methods: One hundred composite specimens were made by using a prefabricated Teflon device, and a layer of LCCM was applied at the interface. The specimens were divided into 5 groups (n = 20): group 1 (control), no LCCM was used; group 2: application of White Kolor Plus Pigment (Kerr) LCCM; group 3: White Tetric Color Pigment (Ivoclar/Vivadent) LCCM; group 4: Brown Kolor Plus Pigment (Kerr) LCCM; group 5: Black Tetric Color Pigment (Ivoclar/Vivadent) LCCM. All materials were used according to the manufacturers' instructions. Specimens were submitted to a tensile test in a universal testing machine (EMIC DL-200MF) to evaluate the cohesive strength at the composite interface. Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: ANOVA showed a p-value = 0.0001, indicating that there were significant differences among the groups. The mean values in MPa (+/- standard deviation) obtained for the groups were: G1: 28.5 (+/-2.74)a; G2: 23.5 (+/-2.47)b; G3: 20.3 (+/-2.49)b; G4: 10.5 (+/-2.40)c; G5: 9.66 (+/-3.06)c. The groups with the same letters presented no significant differences. The control group presented statistically significantly higher cohesive strengths when compared to the other groups. The groups in which Brown Kolor Plus Pigment and Black Tetric Color Pigment LCCM were used showed significantly lower cohesive strengths when compared to the groups in which White Kolor Plus Pigment and White Tetric Color Pigment LCMM were used.Conclusion: The use of LCCM produced with the intrinsic technique reduced the cohesive strength of composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the micro-shear bond strength of 5 adhesive systems to enamel, one single-bottle acid-etch adhesive (O), two self-etching primers (P) and two all-in-one self-etching adhesives (S). Method: Sixty premolar enamel surfaces (buccal or lingual) were ground flat with 400- and 600-grit SiC papers and randomly divided into 5 groups (n=12), according to the adhesive system.. SB2 - Single Bond 2 (O); CSE - Clearfil SE Bond (P); ADS - AdheSE (P); PLP - Adper Prompt L-Pop (S); XE3 - Xeno III (S). Tygon tubing (inner diameter of 0.8mm) restricted the bonding area to obtain the resin composite (Z250) cylinders. After storage in distilled water at 37 degrees C for 24h and thermocycling, micro-shear testing was performed (crosshead speed of 0.5mm/min). Data were submitted to one-way ANOVA and Tukey test (a=5%). Samples were also subjected to stereomicroscopic and SEM evaluations after micro-shear testing. Mean bond strength values (MPa +/- SD) and the results of Tukey test were: SB2: 36.36(+/- 3.34)a; ADS: 33.03(+/- 7.83)a; XE3: 32.76(+/- 5.61)a; CSE: 30.61(+/- 6.68)a; PLP: 22.17(+/- 6.05)b. Groups with the same letter were not statistically different. It can be concluded that no significant difference was there between SB2, ADS, XE3 and CSE, in spite of different etching patterns of these adhesives. Only PLP presented statistically lower bond strengths compared with others. J Clin Pediatr Dent 35(3): 301-304, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the cytotoxic effects of a restorative resin composite applied to an immortalized odontoblast-cell line (MDPC-23). Seventy-two round resin discs (2-mm thick and 4 mm in diameter) were light-cured for 20 or 40 seconds and rinsed, or not, with PBS and culture medium. The resin discs were divided into four experimental groups: Group 1: Z-100/20 seconds; Group 2: Z-100/20 seconds/rinsed; Group 3: Z100/40 seconds; Group 4: Z-100/40 seconds/rinsed. Circular filter paper was used as a control material (Group 5). The round resin discs and filter papers were placed in the bottom of wells of four 24-well dishes (18 wells for each experimental and control group). MDPC-23 cells (30,000 cells/cm(2)) were plated in the wells and allowed to incubate for 72 hours. The zone of inhibition around the resin discs was measured under inverted light microscopy; the MTT assay was carried out for mitochondrial respiration and cell morphology was measured under SEM. The scores obtained from inhibition zone and MTT assay were analyzed with the Kruskal-Wallis followed by Dunnett tests. In Groups 1, 2, 3 and 4, the thickness of the inhibition zone was 1,593 +/- 12.82 mum, 403 +/- 15.49 mum, 1,516 +/- 9.81 mum and 313 +/- 13.56 mum, respectively. There was statistically significant difference among the experimental and control groups at the 0.05 level of significance. The MTT assay demonstrated that the resin discs of the experimental groups 1, 2, 3 and 4 reduced the cell metabolism by 83%, 40.1%, 75.5% and 24.5%. Only between the Groups 2 and 4 was there no statistically significant difference for mitochondrial respiration. Close to the resin discs, the MDPC-23 cells exhibited rounded shapes, with only a few cellular processes keeping the cells attached to the substrate or, even disruption of plasma membrane. Adjacent to the inhibition zone, the cultured cells exhibited multiple fine cellular processes on the cytoplasmic membrane organized in epithelioid nodules, similar to the morphology observed to the control group. Based on the results, the authors may conclude that the Z-100 resin composite light cured for 20 seconds was more cytopathic to MDPC-23 cells than Z-100 light cured for 40 seconds. The cytotoxic effects of the resin discs decreased after rinsing them with PBS and culture medium. This was confirmed by MTT assay and upon evaluation of the inhibition zone, which was narrower following rinsing of the resin discs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. Purpose: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3) of composite resin Filtek Z-250 (3M ESPE) after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante) and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE). Methods: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. Results: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. Conclusion: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE). Conventional halogen (Curing Light 2500 - 3M/ESPE; CL) and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6) were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm2, respectively) and different curing times (20s, 40s and 60s) were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10) were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm) and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5). Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05). Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.