1000 resultados para Ligament cells
Resumo:
BACKGROUND: Despite a large body of clinical and histological data demonstrating beneficial effects of enamel matrix proteins (EMPs) for regenerative periodontal therapy, it is less clear how the available biological data can explain the mechanisms underlying the supportive effects of EMPs. OBJECTIVE: To analyse all available biological data of EMPs at the cellular and molecular levels that are relevant in the context of periodontal wound healing and tissue formation. METHODS: A stringent systematic approach was applied using the key words "enamel matrix proteins" OR "enamel matrix derivative" OR "emdogain" OR "amelogenin". The literature search was performed separately for epithelial cells, gingival fibroblasts, periodontal ligament cells, cementoblasts, osteogenic/chondrogenic/bone marrow cells, wound healing, and bacteria. RESULTS: A total of 103 papers met the inclusion criteria. EMPs affect many different cell types. Overall, the available data show that EMPs have effects on: (1) cell attachment, spreading, and chemotaxis; (2) cell proliferation and survival; (3) expression of transcription factors; (4) expression of growth factors, cytokines, extracellular matrix constituents, and other macromolecules; and (5) expression of molecules involved in the regulation of bone remodelling. CONCLUSION: All together, the data analysis provides strong evidence for EMPs to support wound healing and new periodontal tissue formation.
Resumo:
OBJECTIVE To describe the presence and amount of apoptotic ligamentous cells in different areas of partially ruptured canine cranial cruciate ligaments (prCCLs) and to compare these findings with apoptosis of ligamentous cells in totally ruptured cranial cruciate ligaments (trCCLs). ANIMALS 20 dogs with prCCLs and 14 dogs with trCCLs. PROCEDURES Dogs with prCCLs or trCCLs were admitted to the veterinary hospital for stifle joint treatment. Biopsy specimens of the intact area of prCCLs (group A) and the ruptured area of prCCLs (group B) as well as specimens from trCCLs (group C) were harvested during arthroscopy. Caspase-3 and poly (ADP-ribose) polymerase (PARP) detection were used to detect apoptotic ligamentous cells by immunohistochemistry. RESULTS No difference was found in the degree of synovitis or osteophytosis between prCCLs and trCCLs. No difference was found in degenerative changes in ligaments between groups A and B. A substantial amount of apoptotic cells could be found in > 90% of all stained slides. A correlation (r(s) = 0.71) was found between the number of caspase-3-and PARP-positive cells. No significant difference was found in the amount of apoptotic cells among the 3 groups. No significant correlation could be detected between the degree of synovitis and apoptotic cells or osteophyte production and apoptotic cells. CONCLUSIONS AND CLINICAL RELEVANCE The lack of difference between the 3 groups indicates that apoptosis could be a factor in the internal disease process leading to CCL rupture and is not primarily a consequence of the acute rupture of the ligament.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-beta1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting.
Resumo:
The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.
Resumo:
This study verified the effect of unilateral teeth extraction on the periodontal ligament in gerbils (Meriones unguiculatus). Ten adult male gerbils weighing about 50 g had induced occlusal alterations by upper left molar extractions while the other ten animals, only submitted to surgical stress, were considered as controls. The periodontal ligament was characterized by qualitative and quantitative analysis, histological description and histomorphometric quantification. Significant alterations were observed on the left side of the experimental group (P < 0.05), the hypofunctional region, when it was compared with the contralateral side and the corresponding region of the control group. Two months after occlusal alterations induced by unilateral teeth extraction, atrophic histological alterations and a decrease in the periodontal space on the ipsilateral side characterized the periodontal ligament. In this study it was possible to conclude that the gerbil can be used in experimental models attempting to correlate the periodontium`s biological response to various mechanical stresses, as the periodontal ligament was shown to be highly sensitive to occlusal alterations.
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.
Resumo:
The mm of this work was to evaluate the biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane to be used in guided tissue regeneration (GTR) Fibroblasts from human periodontal ligament (hPDLF) and keratinocytes (SCC9) were plated on P(VDF-TrFE)/BT and polytetrafluorethylene membranes at a cell density of 20.000 cells well(-1) and Cultured for up to 21 days Cell morphology, adhesion and proliferation were evaluated in hPDLF and keratinocytes, while total protein content and alkaline phosphatase (ALP) activity were assayed only for hPDLF Using a higher cell density. real-time polymerase chain reaction (PCR) was performed to assess the expression of typical genes of hPDLF, such as periostin, PDLs17, S100A4 and fibromodulin, and key phenotypic markers of keratinocytes, including involucrin, keratins 1. 10 and 14 Expression of the apoptotic genes bax, bcl-2 and Survivin was evaluated for both cultures hPDLF adhered and spread more oil P(VDF-TrFE)/BT, whereas keratinocytes showed a round shape on both membranes. hPDLF adhesion was greater oil P(VDF-TrFE)/BT at 2 and 4 h, while keratinocyte adhesion was similar for both membranes. Whereas proliferation was significantly higher for hPDLF on P(VDF-TrFE)/BT at days 1 and 7. no signs of keratinocyte proliferation could be noticed for both membranes Total protein content was greater on P(VDF-TrFE)/BT at 7, 14 and 21 days, and higher levels of ALP activity were observed oil P(VDF-TrFE)/BT at 21 days. Real-time PCR revealed higher expression of phenotypic markers of hPDLF and keratinocytes as well as greater expression of apoptotic genes in cultures grown on P(VDF-TrFE)/BT. These results indicate that, by favoring hPDLF adhesion. spreading. proliferation and typical mRNA expression, P(VDF-TrFE)/BT membrane should be considered an advantageous alternative for GTR (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
Resumo:
Regeneration of periodontal tissues aims to utilize tissue engineering techniques to restore lost periodontal tissues including the cementum, periodontal ligament and alveolar bone. Regenerative dentistry and its special field regenerative periodontology represent relatively new and emerging branches of translational stem cell biology and regenerative medicine focusing on replacing and regenerating dental tissues to restore or re-establish their normal function lost during degenerative diseases or acute lesions. The regeneration itself can be achieved through transplantation of autologous or allogenic stem cells, or by improving the tissue self-repair mechanisms (e.g. by application of growth factors). In addition, a combination of stem cells or stem cell-containing tissue with bone implants can be used to improve tissue integration and the clinical outcome. As the oral cavity represents a complex system consisting of teeth, bone, soft tissues and sensory nerves, regenerative periodontology relies on the use of stem cells with relatively high developmental potential. Notably, the potential use of pluripotent stem cell types such as human embryonic stem cells or induced pluripotent stem cells is still aggravated by ethical and practical problems. Thus, other cellular sources such as those readily available in the postnatal craniofacial area and particularly in oral structures offer a much better and realistic alternative as cellular regenerative sources. In this review, we summarize current knowledge on the oral neural crest-derived stem cell populations (oNCSCs) and discuss their potential in regenerative periodontology.
Resumo:
Actinobacillus actinomycetemcomitans plays a major role in the pathogenesis of aggressive periodontitis. Lipopolysaccharide (LPS) derived from A. actinomycetemcomitans is a key factor in inflammatory cytokine generation within periodontal tissues. In this study, we identify major mitogen-activated protein kinase (MAPK) signaling pathways induced by A. actinomycetemcomitans LPS, Escherichia coli LPS and interleukin-1 beta (IL-1 beta) in a murine periodontal ligament (mPDL) fibroblast cell line. Immunoblot analysis was used to assess the phosphorylated forms of p38, extracellular-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) MAPK following stimulation with A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta. IL-6 mRNA induction was detected via reverse transcription-polymerase chain reaction, while protein levels were quantified via enzyme-linked immunosorbent assays (ELISA). We utilized biochemical inhibitors of p38, ERK and JNK MAPK to identify the MAPK signaling pathways needed for IL-6 expression. Additional use of stable mPDL cell lines containing dominant negative mutant constructs of MAPK kinase-3 and -6 (MKK-3/6) and p38 null mutant mouse embryonic fibroblast (MEF) cells were used to substantiate the biochemical inhibitor data. Blocking p38 MAPK with SB203580 reduced the induction of IL-6 mRNA by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta by > 70%, > 95% and similar to 60%, respectively. IL-6 ELISA indicated that blocking p38 MAPK reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta by similar to 60%, similar to 50% and similar to 70%, respectively. All MAPK inhibitors significantly reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta whereas only p38 inhibitors consistently reduced the A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta induction of IL-6 mRNA steady-state levels. The contribution of p38 MAPK LPS-induced IL-6 expression was confirmed using MKK-3/6 dominant negative stable mPDL cell lines. Wild-type and p38 alpha(-/-) MEF cells provided additional evidence to support the role of p38 alpha MAPK in A. actinomycetemcomitans LPS-stimulated IL-6. Our results indicate that induction of IL-6 by E. coli LPS, IL-1 beta and A. actinomycetemcomitans LPS requires signaling through MKK-3-p38 alpha ERK, JNK and p38 MAPK in mPDL cells.
Resumo:
Mast cells are present in the eye of Gallus domesticus, appearing in the anterior uvea in embryos at stage 39 HH (13th day). In hatching and adult birds, they are present in the sclera, uvea, pectinate Ligament, and conjunctiva. Mast cells are absent in the cornea, retina, and pecten oculi.Maturing mast cells in the anterior eye segment appear as round cells having eccentric nuclei and a few cytoplasmic metachromatic granules, whose fluorescence increases during development. Mature cells are more numerous in late development, and their cytoplasm is rich in metachromatic and intensely fluorescent granules. Ultrastructurally, maturing mast cells display progranules and a few electron dense and homogeneous granules on one side of the cell. Mast cells of adult birds possess homogeneous cytoplasmic granules, some of which display protuberances that penetrate hollows of adjoining granules. Heterogeneous granules exhibiting latticed and mottled patterns are also present. The existence of mast cells in the anterior eye segment indicates that these cells might perform a physiological role during development and in aqueous humor outflow. They might modulate exchanges between blood and aqueous humor through chemical mediators present in their granules. (C) 1996 Wiley-Liss, Inc.
Resumo:
Background and Objectives: Epithelial rests of Malassez are clusters of cells derived from Hertwig's root sheath that remain in the periodontal ligament throughout life. Although it is known that the cells of Malassez proliferate, there are no studies showing that they undergo programmed cell death, i.e. apoptosis. In most tissues, proliferation is balanced by apoptosis. Thus we examined regions of the periodontium of young and adult rat molars in the hope of detecting apoptosis.Methods: Wistar rats aged 29, 45 and 120 days were killed with chloral hydrate (600 mg/kg). Fragments containing maxillary molars were removed and fixed in formaldehyde, decalcified, and embedded in paraffin and glycol methacrylate. Sections were stained with hematoxylin/eosin and the Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) method for detection of apoptosis. Specimens were also fixed in glutaraldehyde-formaldehyde, decalcified and processed for transmission electron microscopy.Results: Epithelial rests of Malassez containing round/ovoid basophilic dense bodies and TUNEL-positive structures were found in all specimens examined. Ultrastructural examination revealed that some cells of Malassez contained masses of condensed peripheral chromatin and a shrunken cytoplasm exhibiting intact organelles - images typical of apoptosis. Moreover, round/ovoid electron-opaque structures appeared to be in the process of being engulfed by neighboring epithelial cells of Malassez.Conclusions: Our results demonstrate that epithelial cells of Malassez's rests undergo apoptosis in the developing and adult periodontium. Apoptosis may, together with proliferation, be part of the mechanism of turnover/remodelling of the cells of Malassez.