930 resultados para Life Cycle Analysis (LCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows the influence of using different allocation approaches when modelling the inventory analysis in a soybean biodiesel life cycle assessment (LCA). Results obtained using mass, energy and economic based allocations are compared, focusing on the following aspects: normalised potential environmental impact (PEI) categories, total PEI and relative contributions to the total PEI from each life cycle stage and environmental impact category. Similar results are obtained either using economic and energy based allocations. However, different results are obtained when mass based allocation is used when compared with the other two. This study also illustrates that using different allocation approaches in biodiesel LCA may influence the final conclusions, especially in comparative assertions, emphasising the need to perform a sensitivity analysis in the LCA interpretation step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers' or consumers' health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/ SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life cycle analyses (LCA) approaches require adaptation to reflect the increasing delocalization of production to emerging countries. This work addresses this challenge by establishing a country-level, spatially explicit life cycle inventory (LCI). This study comprises three separate dimensions. The first dimension is spatial: processes and emissions are allocated to the country in which they take place and modeled to take into account local factors. Emerging economies China and India are the location of production, the consumption occurs in Germany, an Organisation for Economic Cooperation and Development country. The second dimension is the product level: we consider two distinct textile garments, a cotton T-shirt and a polyester jacket, in order to highlight potential differences in the production and use phases. The third dimension is the inventory composition: we track CO2, SO2, NO (x), and particulates, four major atmospheric pollutants, as well as energy use. This third dimension enriches the analysis of the spatial differentiation (first dimension) and distinct products (second dimension). We describe the textile production and use processes and define a functional unit for a garment. We then model important processes using a hierarchy of preferential data sources. We place special emphasis on the modeling of the principal local energy processes: electricity and transport in emerging countries. The spatially explicit inventory is disaggregated by country of location of the emissions and analyzed according to the dimensions of the study: location, product, and pollutant. The inventory shows striking differences between the two products considered as well as between the different pollutants considered. For the T-shirt, over 70% of the energy use and CO2 emissions occur in the consuming country, whereas for the jacket, more than 70% occur in the producing country. This reversal of proportions is due to differences in the use phase of the garments. For SO2, in contrast, over two thirds of the emissions occur in the country of production for both T-shirt and jacket. The difference in emission patterns between CO2 and SO2 is due to local electricity processes, justifying our emphasis on local energy infrastructure. The complexity of considering differences in location, product, and pollutant is rewarded by a much richer understanding of a global production-consumption chain. The inclusion of two different products in the LCI highlights the importance of the definition of a product's functional unit in the analysis and implications of results. Several use-phase scenarios demonstrate the importance of consumer behavior over equipment efficiency. The spatial emission patterns of the different pollutants allow us to understand the role of various energy infrastructure elements. The emission patterns furthermore inform the debate on the Environmental Kuznets Curve, which applies only to pollutants which can be easily filtered and does not take into account the effects of production displacement. We also discuss the appropriateness and limitations of applying the LCA methodology in a global context, especially in developing countries. Our spatial LCI method yields important insights in the quantity and pattern of emissions due to different product life cycle stages, dependent on the local technology, emphasizing the importance of consumer behavior. From a life cycle perspective, consumer education promoting air-drying and cool washing is more important than efficient appliances. Spatial LCI with country-specific data is a promising method, necessary for the challenges of globalized production-consumption chains. We recommend inventory reporting of final energy forms, such as electricity, and modular LCA databases, which would allow the easy modification of underlying energy infrastructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyzes the environmental performance of the Municipal Solid Waste Management System (MSWMS) of Piedade, São Paulo, from a systemic perspective. A life cycle assessment (LCA) technique was applied according to an attributional approach to evaluate both the current operational situation and different prospective scenarios, which were devised based on the application of targets for recycling dry and wet waste suggested by the pre-draft version of the Brazilian Plan for Solid Waste. The life cycle impact assessment method EcoIndicator 99, in association with normalization and weighting procedures, was used to conduct the analysis. It was observed that the adoption of goals of 30%, 50% and 70% for recovering of the recyclable dry waste, resulted in improvement of the environmental performance of the waste management system under analysis, respectively of 10%, 15% and 20%. It was also possible to detect an evolution in the order of 54% in reducing impacts resulting from the adoption of targets for composting. LCA proved to be effective for the evaluation of the environmental performance of MSWMS-Piedade. However, for future evaluations, the attributional approach should be replaced by the methodological practice of substitution to enable the avoided burdens to be considered in estimations of the environmental performance municipal solid waste management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio che la candidata ha elaborato nel progetto del Dottorato di ricerca si inserisce nel complesso percorso di soluzione del problema energetico che coinvolge necessariamente diverse variabili: economiche, tecniche, politiche e sociali L’obiettivo è di esprimere una valutazione in merito alla concreta “convenienza” dello sfruttamento delle risorse rinnovabili. Il percorso scelto è stato quello di analizzare alcuni impianti di sfruttamento, studiare il loro impatto sull’ambiente ed infine metterli a confronto. Questo ha consentito di trovare elementi oggettivi da poter valutare. In particolare la candidata ha approfondito il tema dello sfruttamento delle risorse “biomasse” analizzando nel dettaglio alcuni impianti in essere nel Territorio della Regione Emilia-Romagna: impianti a micro filiera, filiera corta e filiera lunga. Con la collaborazione di Arpa Emilia-Romagna, Centro CISA e dell’Associazione Prof. Ciancabilla, è stata fatta una scelta degli impianti da analizzare: a micro filiera: impianto a cippato di Castel d’Aiano, a filiera corta: impianto a biogas da biomassa agricola “Mengoli” di Castenaso, a filiera lunga: impianto a biomasse solide “Tampieri Energie” di Faenza. Per quanto riguarda la metodologia di studio utilizzata è stato effettuato uno studio di Life Cycle Assesment (LCA) considerando il ciclo di vita degli impianti. Tramite l’utilizzo del software “SimaPro 6.0” si sono ottenuti i risultati relativi alle categorie di impatto degli impianti considerando i metodi “Eco Indicator 99” ed “Edip Umip 96”. Il confronto fra i risultati dell’analisi dei diversi impianti non ha portato a conclusioni di carattere generale, ma ad approfondite valutazioni specifiche per ogni impianto analizzato, considerata la molteplicità delle variabili di ogni realtà, sia per quanto riguarda la dimensione/scala (microfiliera, filiera corta e filiera lunga) che per quanto riguarda le biomasse utilizzate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life Cycle Assessment (LCA) is a chain-oriented tool to evaluate the environment performance of products focussing on the entire life cycle of these products: from the extraction of resources, via manufacturing and use, to the final processing of the disposed products. Through all these stages consumption of resources and pollutant releases to air, water, soil are identified and quantified in Life Cycle Inventory (LCI) analysis. Subsequently to the LCI phase follows the Life Cycle Impact Assessment (LCIA) phase; that has the purpose to convert resource consumptions and pollutant releases in environmental impacts. The LCIA aims to model and to evaluate environmental issues, called impact categories. Several reports emphasises the importance of LCA in the field of ENMs. The ENMs offer enormous potential for the development of new products and application. There are however unanswered questions about the impacts of ENMs on human health and the environment. In the last decade the increasing production, use and consumption of nanoproducts, with a consequent release into the environment, has accentuated the obligation to ensure that potential risks are adequately understood to protect both human health and environment. Due to its holistic and comprehensive assessment, LCA is an essential tool evaluate, understand and manage the environmental and health effects of nanotechnology. The evaluation of health and environmental impacts of nanotechnologies, throughout the whole of their life-cycle by using LCA methodology. This is due to the lack of knowledge in relation to risk assessment. In fact, to date, the knowledge on human and environmental exposure to nanomaterials, such ENPs is limited. This bottleneck is reflected into LCA where characterisation models and consequently characterisation factors for ENPs are missed. The PhD project aims to assess limitations and challenges of the freshwater aquatic ecotoxicity potential evaluation in LCIA phase for ENPs and in particular nanoparticles as n-TiO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examined the potentialities of Life Cycle Assessment (LCA) as instrument for policy-support. To this respect, the adoption of an initiative within the Madrid Air Quality Plan (AQP) 2011–2015 regarding the substitution of diesel taxis with hybrid, natural gas and LPG alternatives was studied. Four different scenarios were elaborated, a business-as-usual scenario (BAU), the scenario of the AQP, and two extreme-situation scenarios: all-diesel (ADI) and all-ecologic (AEC). Impacts were characterized according to the ILCD methodology, focusing especially on climate change (CC) and photochemical ozone formation (PO). SimaPro 7.3 was used as analysis and inventory-construction tool. The results indicate that the shift to ecologic alternatives reduced impacts, especially those related to CC and PO. For the complete life cycle, reductions of 13% (CC) and 25% (PO) were observed for AQP against BAU (CC:1365 GgCO2, PO:13336 MgNMVOC). Deeper reductions were observed for AEC (CC:34%, PO:59%), while ADI produced slight increases in impacts if against BAU. The analysis of the use-phase revealed that the central and highest speed zones of the city benefit from the adoption of AQP. This is especially evident in zone 7, with reductions of 16% in CC and 31% in PO respectively against BAU (CCzone1:3443 kgCO2/veh·km, POzone7:11.1 kgNMVOC/veh·km).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Botanically, green composites belong to an economically important seed plant family that includes maize, wheat, rice, and sorghum known as Saccharum offi cinarum. There are so many natural fibers available in the environment such as rice husk, hemp fibers, flax fibers, bamboo fibers, coconut fiber, coconut coir, grawia optiva and many others also. Life Cycle Assessment (LCA) is a process to estimate the environmental feature and potential impacts related to a product, by organizing a directory of pertinent inputs and outputs of a product system, assessing the potential environmental impacts related with the said inputs and outputs, explaining the results of the inventory analysis and impact evaluation phases in connection to the objectives of the study. Particularly Bagasse, an agricultural residue not only becomes a problem from the environmental point of view, but also affects the profitability of the sugarcane industries. This chapter discusses the properties, processing methods and various other aspects including economic and environmental aspects related to green composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain finishing of cattle has become increasingly common in Australia over the past 30 years. However, interest in the associated environmental impacts and resource use is increasing and requires detailed analysis. In this study we conducted a life cycle assessment (LCA) to investigate impacts of the grain-finishing stage for cattle in seven feedlots in eastern Australia, with a particular focus on the feedlot stage, including the impacts from producing the ration, feedlot operations, transport, and livestock emissions while cattle are in the feedlot (gate-to-gate). The functional unit was 1 kg of liveweight gain (LWG) for the feedlot stage and results are included for the full supply chain (cradle-to-gate), reported per kilogram of liveweight (LW) at the point of slaughter. Three classes of cattle produced for different markets were studied: short-fed domestic market (55–80 days on feed), mid-fed export (108–164 days on feed) and long-fed export (>300 days on feed). In the feedlot stage, mean fresh water consumption was found to vary from 171.9 to 672.6 L/kg LWG and mean stress-weighted water use ranged from 100.9 to 193.2 water stress index eq. L/kg LWG. Irrigation contributed 57–91% of total fresh water consumption with differences mainly related to the availability of irrigation water near the feedlot and the use of irrigated feed inputs in rations. Mean fossil energy demand ranged from 16.5 to 34.2 MJ lower heating values/kg LWG and arable land occupation from 18.7 to 40.5 m2/kg LWG in the feedlot stage. Mean greenhouse gas (GHG) emissions in the feedlot stage ranged from 4.6 to 9.5 kg CO2-e/kg LWG (excluding land use and direct land-use change emissions). Emissions were dominated by enteric methane and contributions from the production, transport and milling of feed inputs. Linear regression analysis showed that the feed conversion ratio was able to explain >86% of the variation in GHG intensity and energy demand. The feedlot stage contributed between 26% and 44% of total slaughter weight for the classes of cattle fed, whereas the contribution of this phase to resource use varied from 4% to 96% showing impacts from the finishing phase varied considerably, compared with the breeding and backgrounding. GHG emissions and total land occupation per kilogram of LWG during the grain finishing phase were lower than emissions from breeding and backgrounding, resulting in lower life-time emissions for grain-finished cattle compared with grass finishing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.