942 resultados para Lexical processing
Resumo:
This study examined spoken-word recognition in children with specific language impairment (SLI) and normally developing children matched separately for age and receptive language ability. Accuracy and reaction times on an auditory lexical decision task were compared. Children with SLI were less accurate than both control groups. Two subgroups of children with SLI, distinguished by performance accuracy only, were identified. One group performed within normal limits, while a second group was significantly less accurate. Children with SLI were not slower than the age-matched controls or language-matched controls. Further, the time taken to detect an auditory signal, make a decision, or initiate a verbal response did not account for the differences between the groups. The findings are interpreted as evidence for language-appropriate processing skills acting upon imprecise or underspecified stored representations.
Resumo:
Recent semantic priming investigations in Parkinsons disease (PD) employed variants of Neelys (1977) lexical decision paradigm to dissociate the automatic and attentional aspects of semantic activation (McDonald, Brown, Gorell, 1996; Spicer, Brown, Gorell, 1994). In our earlier review, we claimed that the results of Spicer, McDonald and colleagues normal control participants violated the two-process model of information processing (Posner Snyder, 1975) upon which their experimental paradigm had been based (Arnott Chenery, 1999). We argued that, even at the shortest SOA employed, key design modifications to Neelys original experiments biased the tasks employed by Spicer et al. and McDonald et al. towards being assessments of attention-dependent processes. Accordingly, we contended that experimental procedures did not speak to issues of automaticity and, therefore, Spicer, McDonald and colleagues claims of robust automatic semantic activation in PD must be treated with caution.
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
The reliance in experimental psychology on testing undergraduate populations with relatively little life experience, and/or ambiguously valenced stimuli with varying degrees of self-relevance, may have contributed to inconsistent findings in the literature on the valence hypothesis. To control for these potential limitations, the current study assessed lateralised lexical decisions for positive and negative attachment words in 40 middle-aged male and female participants. Self-relevance was manipulated in two ways: by testing currently married compared with previously married individuals and by assessing self-relevance ratings individually for each word. Results replicated a left hemisphere advantage for lexical decisions and a processing advantage of emotional over neutral words but did not support the valence hypothesis. Positive attachment words yielded a processing advantage over neutral words in the right hemisphere, while emotional words (irrespective of valence) yielded a processing advantage over neutral words in the left hemisphere. Both self-relevance manipulations were unrelated to lateralised performance. The role of participant sex and age in emotion processing are discussed as potential modulators of the present findings.
Resumo:
Knowledge on the patterns of repetition amongst individuals who develop language deficits in association with right hemisphere lesions (crossed aphasia) is very limited. Available data indicate that repetition in some crossed aphasics experiencing phonological processing deficits is not heavily influenced by lexical-semantic variables (lexicality, imageability, and frequency) as is regularly reported in phonologically-impaired cases with left hemisphere damage. Moreover, in view of the fact that crossed aphasia is rare, information on the role of right cortical areas and white matter tracts underpinning language repetition deficits is scarce. In this study, repetition performance was assessed in two patients with crossed conduction aphasia and striatal/capsular vascular lesions encompassing the right arcuate fasciculus (AF) and inferior frontal-occipital fasciculus (IFOF), the temporal stem and the white matter underneath the supramarginal gyrus. Both patients showed lexicality effects repeating better words than non-words, but manipulation of other lexical-semantic variables exerted less influence on repetition performance. Imageability and frequency effects, production of meaning-based paraphrases during sentence repetition, or better performance on repeating novel sentences than overlearned clichés were hardly ever observed in these two patients. In one patient, diffusion tensor imaging disclosed damage to the right long direct segment of the AF and IFOF with relative sparing of the anterior indirect and posterior segments of the AF, together with fully developed left perisylvian white matter pathways. These findings suggest that striatal/capsular lesions extending into the right AF and IFOF in some individuals with right hemisphere language dominance are associated with atypical repetition patterns which might reflect reduced interactions between phonological and lexical-semantic processes.
Resumo:
Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to have richer resources with a broad range of potential uses for a significant number of languages.With the objective of reducing cost byeliminating human intervention, we present a new method for automating the merging of resources,with special emphasis in what we call the mapping step. This mapping step, which converts the resources into a common format that allows latter the merging, is usually performed with huge manual effort and thus makes the whole process very costly. Thus, we propose a method to perform this mapping fully automatically. To test our method, we have addressed the merging of two verb subcategorization frame lexica for Spanish, The resultsachieved, that almost replicate human work, demonstrate the feasibility of the approach.
Resumo:
Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to obtain richer resources and a broader range of potential uses for a significant number of languages. With the objective of reducing cost by eliminating human intervention, we present a new method towards the automatic merging of resources. This method includes both, the automatic mapping of resources involved to a common format and merging them, once in this format. This paper presents how we have addressed the merging of two verb subcategorization frame lexica for Spanish, but our method will be extended to cover other types of Lexical Resources. The achieved results, that almost replicate human work, demonstrate the feasibility of the approach.
Resumo:
The present work suggests that sentence processing requires both heuristic and algorithmic processing streams, where the heuristic processing strategy precedes the algorithmic phase. This conclusion is based on three self-paced reading experiments in which the processing of two-sentence discourses was investigated, where context sentences exhibited quantifier scope ambiguity. Experiment 1 demonstrates that such sentences are processed in a shallow manner. Experiment 2 uses the same stimuli as Experiment 1 but adds questions to ensure deeper processing. Results indicate that reading times are consistent with a lexical-pragmatic interpretation of number associated with context sentences, but responses to questions are consistent with the algorithmic computation of quantifier scope. Experiment 3 shows the same pattern of results as Experiment 2, despite using stimuli with different lexicalpragmatic biases. These effects suggest that language processing can be superficial, and that deeper processing, which is sensitive to structure, only occurs if required. Implications for recent studies of quantifier scope ambiguity are discussed.
Resumo:
Based on the theoretical framework of Dressler and Dziubalska-Kołaczyk (2006a,b), the Strong Morphonotactic Hypothesis will be tested. It assumes that phonotactics helps in decomposition of words into morphemes: if a certain sequence occurs only or only by default over a morpheme boundary and is thus a prototypical morphonotactic sequence, it should be processed faster and more accurately than a purely phonotactic sequence. Studies on typical and atypical first language acquisition in English, Lithuanian and Polish have shown significant differences between the acquisition of morphonotactic and phonotactic consonant clusters: Morphonotactic clusters are acquired earlier and faster by typically developing children, but are more problematic for children with Specific Language Impairment. However, results on acquisition are less clear for German. The focus of this contribution is whether and how German-speaking adults differentiate between morphonotactic and phonotactic consonant clusters and vowel-consonant sequences in visual word recognition. It investigates whether sub-lexical letter sequences are found faster when the target sequence is separated from the word stem by a morphological boundary than when it is a part of a morphological root. An additional factor that is addressed concerns the position of the target cluster in the word. Due to the bathtub effect, sequences in peripheral positions in a word are more salient and thus facilitate processing more than word-internal positions. Moreover, for adults the primacy effect most favors word-initial position (whereas for young children the recency effect most favors word- final position). Our study discusses effects of phonotactic vs. morphonotactic cluster status and of position within the word.
Resumo:
Bien que le passage du temps altère le cerveau, la cognition ne suit pas nécessairement le même destin. En effet, il existe des mécanismes compensatoires qui permettent de préserver la cognition (réserve cognitive) malgré le vieillissement. Les personnes âgées peuvent utiliser de nouveaux circuits neuronaux (compensation neuronale) ou des circuits existants moins susceptibles aux effets du vieillissement (réserve neuronale) pour maintenir un haut niveau de performance cognitive. Toutefois, la façon dont ces mécanismes affectent l’activité corticale et striatale lors de tâches impliquant des changements de règles (set-shifting) et durant le traitement sémantique et phonologique n’a pas été extensivement explorée. Le but de cette thèse est d’explorer comment le vieillissement affecte les patrons d’activité cérébrale dans les processus exécutifs d’une part et dans l’utilisation de règles lexicales d’autre part. Pour cela nous avons utilisé l’imagerie par résonance magnétique fonctionnelle (IRMf) lors de la performance d’une tâche lexicale analogue à celle du Wisconsin. Cette tâche a été fortement liée à de l’activité fronto-stritale lors des changements de règles, ainsi qu’à la mobilisation de régions associées au traitement sémantique et phonologique lors de décisions sémantiques et phonologiques, respectivement. Par conséquent, nous avons comparé l’activité cérébrale de jeunes individus (18 à 35 ans) à celle d’individus âgés (55 à 75 ans) lors de l’exécution de cette tâche. Les deux groupes ont montré l’implication de boucles fronto-striatales associées à la planification et à l’exécution de changements de règle. Toutefois, alors que les jeunes semblaient activer une « boucle cognitive » (cortex préfrontal ventrolatéral, noyau caudé et thalamus) lorsqu’ils se voyaient indiquer qu’un changement de règle était requis, et une « boucle motrice » (cortex postérieur préfrontal et putamen) lorsqu’ils devaient effectuer le changement, les participants âgés montraient une activation des deux boucles lors de l’exécution des changements de règle seulement. Les jeunes adultes tendaient à présenter une augmentation de l’activité du cortex préfrontal ventrolatéral, du gyrus fusiforme, du lobe ventral temporale et du noyau caudé lors des décisions sémantiques, ainsi que de l’activité au niveau de l’aire de Broca postérieur, de la junction temporopariétale et du cortex moteur lors de décisions phonologiques. Les participants âgés ont montré de l’activité au niveau du cortex préfrontal latéral et moteur durant les deux types de décisions lexicales. De plus, lorsque les décisions sémantiques et phonologiques ont été comparées entre elles, les jeunes ont montré des différences significatives au niveau de plusieurs régions cérébrales, mais pas les âgés. En conclusion, notre première étude a montré, lors du set-shifting, un délai de l’activité cérébrale chez les personnes âgées. Cela nous a permis de conceptualiser l’Hypothèse Temporelle de Compensation (troisième manuscrit) qui consiste en l’existence d’un mécanisme compensatoire caractérisé par un délai d’activité cérébrale lié au vieillissement permettant de préserver la cognition au détriment de la vitesse d’exécution. En ce qui concerne les processus langagiers (deuxième étude), les circuits sémantiques et phonologiques semblent se fusionner dans un seul circuit chez les individus âgés, cela représente vraisemblablement des mécanismes de réserve et de compensation neuronales qui permettent de préserver les habilités langagières.
Resumo:
Background: The computational grammatical complexity ( CGC) hypothesis claims that children with G(rammatical)-specific language impairment ( SLI) have a domain-specific deficit in the computational system affecting syntactic dependencies involving 'movement'. One type of such syntactic dependencies is filler-gap dependencies. In contrast, the Generalized Slowing Hypothesis claims that SLI children have a domain-general deficit affecting processing speed and capacity. Aims: To test contrasting accounts of SLI we investigate processing of syntactic (filler-gap) dependencies in wh-questions. Methods & Procedures: Fourteen 10; 2 - 17; 2 G-SLI children, 14 age- matched and 17 vocabulary-matched controls were studied using the cross- modal picturepriming paradigm. Outcomes & Results: G-SLI children's processing speed was significantly slower than the age controls, but not younger vocabulary controls. The G- SLI children and vocabulary controls did not differ on memory span. However, the typically developing and G-SLI children showed a qualitatively different processing pattern. The age and vocabulary controls showed priming at the gap, indicating that they process wh-questions through syntactic filler-gap dependencies. In contrast, G-SLI children showed priming only at the verb. Conclusions: The findings indicate that G-SLI children fail to establish reliably a syntactic filler- gap dependency and instead interpret wh-questions via lexical thematic information. These data challenge the Generalized Slowing Hypothesis account, but support the CGC hypothesis, according to which G-SLI children have a particular deficit in the computational system affecting syntactic dependencies involving 'movement'. As effective remediation often depends on aetiological insight, the discovery of the nature of the syntactic deficit, along side a possible compensatory use of semantics to facilitate sentence processing, can be used to direct therapy. However, the therapeutic strategy to be used, and whether such similar strengths and weaknesses within the language system are found in other SLI subgroups are empirical issues that warrant further research.
Resumo:
Four groups of second language (L2) learners of English from different language backgrounds (Chinese, Japanese, German, and Greek) and a group of native speaker controls participated in an online reading time experiment with sentences involving long-distance whdependencies. Although the native speakers showed evidence of making use of intermediate syntactic gaps during processing, the L2 learners appeared to associate the fronted wh-phrase directly with its lexical subcategorizer, regardless of whether the subjacency constraint was operative in their native language. This finding is argued to support the hypothesis that nonnative comprehenders underuse syntactic information in L2 processing.
Resumo:
Embodied theories of cognition propose that neural substrates used in experiencing the referent of a word, for example perceiving upward motion, should be engaged in weaker form when that word, for example ‘rise’, is comprehended. Motivated by the finding that the perception of irrelevant background motion at near-threshold, but not supra-threshold, levels interferes with task execution, we assessed whether interference from near-threshold background motion was modulated by its congruence with the meaning of words (semantic content) when participants completed a lexical decision task (deciding if a string of letters is a real word or not). Reaction times for motion words, such as ‘rise’ or ‘fall’, were slower when the direction of visual motion and the ‘motion’ of the word were incongruent — but only when the visual motion was at nearthreshold levels. When motion was supra-threshold, the distribution of error rates, not reaction times, implicated low-level motion processing in the semantic processing of motion words. As the perception of near-threshold signals is not likely to be influenced by strategies, our results support a close contact between semantic information and perceptual systems.
Resumo:
Models of normal word production are well specified about the effects of frequency of linguistic stimuli on lexical access, but are less clear regarding the same effects on later stages of word production, particularly word articulation. In aphasia, this lack of specificity of down-stream frequency effects is even more noticeable because there is relatively limited amount of data on the time course of frequency effects for this population. This study begins to fill this gap by comparing the effects of variation of word frequency (lexical, whole word) and bigram frequency (sub-lexical, within word) on word production abilities in ten normal speakers and eight mild–moderate individuals with aphasia. In an immediate repetition paradigm, participants repeated single monosyllabic words in which word frequency (high or low) was crossed with bigram frequency (high or low). Indices for mapping the time course for these effects included reaction time (RT) for linguistic processing and motor preparation, and word duration (WD) for speech motor performance (word articulation time). The results indicated that individuals with aphasia had significantly longer RT and WD compared to normal speakers. RT showed a significant main effect only for word frequency (i.e., high-frequency words had shorter RT). WD showed significant main effects of word and bigram frequency; however, contrary to our expectations, high-frequency items had longer WD. Further investigation of WD revealed that independent of the influence of word and bigram frequency, vowel type (tense or lax) had the expected effect on WD. Moreover, individuals with aphasia differed from control speakers in their ability to implement tense vowel duration, even though they could produce an appropriate distinction between tense and lax vowels. The results highlight the importance of using temporal measures to identify subtle deficits in linguistic and speech motor processing in aphasia, the crucial role of phonetic characteristics of stimuli set in studying speech production and the need for the language production models to account more explicitly for word articulation.
Resumo:
An ongoing debate on second language (L2) processing revolves around whether or not L2 learners process syntactic information similarly to monolinguals (L1), and what factors lead to a native-like processing. According to the Shallow Structure Hypothesis (Clahsen & Felser, 2006a), L2 learners’ processing does not include abstract syntactic features, such as intermediate gaps of wh-movement, but relies more on lexical/semantic information. Other researchers have suggested that naturalistic L2 exposure can lead to native-like processing (Dussias, 2003). This study investigates the effect of naturalistic exposure in processing wh-dependencies. Twenty-six advanced Greek learners of L2 English with an average nine years of naturalistic exposure, 30 with classroom exposure, and 30 native speakers of English completed a self-paced reading task with sentences involving intermediate gaps. L2 learners with naturalistic exposure showed evidence of native-like processing of the intermediate gaps, suggesting that linguistic immersion can lead to native-like abstract syntactic processing in the L2.