46 resultados para Lesotho
Resumo:
Aim Test hypotheses that present biodiversity and endemic species richness are related to climatic stability and/or biome persistence.Location Africa south of 15° S. Methods Seventy eight HadCM3 general circulation model palaeoclimate experiments spanning the last 140,000 years, plus a pre-industrial experiment,were used to calculate measures of climatic variability for 0.5° grid cells. Models were fitted relating distributions of the nine biomes of South Africa,Lesotho and Swaziland to present climate. These models were used to simulate potential past biome distribution and extent for the 78 palaeoclimate experiments, and three measures of biome persistence. Climatic response surfaces were fitted for 690 bird species regularly breeding in the region and used to simulate present species richness for cells of the 0.5° grid. Species richness was evaluated for residents, mobile species (nomadic or partially/altitudinally migrant within the region), and intra-African migrants, and also separately for endemic/near-endemic (hereafter ‘endemic’) species as a whole and those associated with each biome. Our hypotheses were tested by analysing correlations between species richness and climatic variability or biome persistence. Results The magnitude of climatic variability showed clear spatial patterns. Marked changes in biome distributions and extents were projected, although limited areas of persistence were projected for some biomes. Overall species richness was not correlated with climatic variability, although richness of mobile species showed a weak negative correlation. Endemic species richness was significantly negatively correlated with climatic variability. Strongest correlations, however, were positive correlations between biome persistence and richness of endemics associated with individual biomes. Main conclusions Low climatic variability, and especially a degree of stability enabling biome persistence, is strongly correlated with species richness of birds endemic to southern Africa. This probably principally reflects reduced extinction risk for these species where the biome to which they are adapted persisted
Resumo:
OBJECTIVES Zidovudine (ZDV) is recommended for first-line antiretroviral therapy (ART) in resource-limited settings. ZDV may, however, lead to anemia and impaired immunological response. We compared CD4+ cell counts over 5 years between patients starting ART with and without ZDV in southern Africa. DESIGN Cohort study. METHODS Patients aged at least 16 years who started first-line ART in South Africa, Botswana, Zambia, or Lesotho were included. We used linear mixed-effect models to compare CD4+ cell count trajectories between patients on ZDV-containing regimens and patients on other regimens, censoring follow-up at first treatment change. Impaired immunological recovery, defined as a CD4+ cell count below 100 cells/μl at 1 year, was assessed in logistic regression. Analyses were adjusted for baseline CD4+ cell count and hemoglobin level, age, sex, type of regimen, viral load monitoring, and calendar year. RESULTS A total of 72,597 patients starting ART, including 19,758 (27.2%) on ZDV, were analyzed. Patients on ZDV had higher CD4+ cell counts (150 vs.128 cells/μl) and hemoglobin level (12.0 vs. 11.0 g/dl) at baseline, and were less likely to be women than those on other regimens. Adjusted differences in CD4+ cell counts between regimens containing and not containing ZDV were -16 cells/μl [95% confidence interval (CI) -18 to -14] at 1 year and -56 cells/μl (95% CI -59 to -52) at 5 years. Impaired immunological recovery was more likely with ZDV compared to other regimens (odds ratio 1.40, 95% CI 1.22-1.61). CONCLUSION In southern Africa, ZDV is associated with inferior immunological recovery compared to other backbones. Replacing ZDV with another nucleoside reverse transcriptase inhibitor could avoid unnecessary switches to second-line ART.
Resumo:
The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Bacon's large-print map of the Transvaal and Orange Free State. It was published by G.W. Bacon & Co. ca. 1899. Scale [ca. 1:1,900,000]. Covers also Swaziland, Lesotho, and portions of Botswana, Zimbabwe, and Mozambique.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial and administrative boundaries, roads, railroads, shoreline features, and more. Relief shown by shading and spot heights. Includes also insets: "Map showing the routes from England and India to South Africa", "Environs of Cape Town", "Lorenço Marquez [and vicinity]", 'South Africa" and "Durban and Port Natal".This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Nova tabula Indiae Orientalis. It was published by Carolus Allard excudit, between 1690 and 1710. Scale [ca. 1:5,500,000]. Covers the Indian Ocean Region. Map in Latin. The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Miller Cylindrical projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Basse Aethiopie, qui comprend les Royaume de Congo, coste, et pays des Cafres, empires du Monomatapa, Monoemugi : la coste deça le Cap Negre est tirée en partie de Samuel Blommaert ; en dela, avecq l'Isle de Madagascar, de Sanuto ; le dedans du pays, d'autres, par N. Sanson. I. Somer Pruthenus Sculp. It was published by Chez Pierre Mariette in 1655. Scale [ca. 1:11,250,000]. Covers portions of Southern, Central, and Eastern Africa. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de l'Afrique meridionale : ou pays entre la ligne & le cap de Bonne Esperance et l'isle de Madagascar, par la veuve de Nicolas Visscher avec privilege. It was published by Chez Henry de Leth, Marchand de l'Estampes près de la Boursse ca. 1730. Scale [ca. 1:12,250,000]. Covers portions of Southern, Central, and Eastern Africa. Map in French and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially. Includes notes and insets: [Cabo de Bon Esperanca], Elevation du port et Mont Table au Cap de Bonne Esperance and Plan du port et Mont Table au Cap de Bonne Esperance.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Juta's map of South Africa from the Cape to the Zambesi, compiled from the best available Colonial and Imperial information including the official Cape Colony map by the Surveyor General, Cape Town, Dr. T. Hahn's Damaraland, and F.C. Selous' journals and sketches ; published by J.C. Juta & Co. It was published by J.C. Juta : Edward Stanford. in 1897. Scale [ca. 1:2,534,400]. Covers Southern Africa. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Lambert Conformal Conic projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial and administrative boundaries, shoreline features, roads, railroads, mines, and more. Relief shown by hachures. Includes also notes about land cover.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Stanford's new map of the Orange Free State, the southern part of the South African Republic, the northern frontier of Cape Colony, Natal, Basutoland and Delagoa Bay. It was published by E. Stanford in 1899. Scale 1:1,000,000 The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Lambert Conformal Conic projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, roads, railroads and stations, administrative and territorial boundaries, shoreline features, and more. Relief shown by shading and spot heights.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.