991 resultados para Leaf-area
Resumo:
The objective of this study was to evaluate the structure of Tanzania grassland grazed by goats managed with different residue leaf area index (RLAI) under intermittent stocking. The experiment was carried out from February to August, 2008. The treatments consisted of three different targets RLAI (0.8, 1.6 and 2.4) and 95% light interception (LI) criterion determined the rest period. Forage samples were collected at average height sampling points and weighed. Subsequently, a smaller sample was removed to separate the morphological components (leaf, stem and dead material) and to determine the structural and productive features. The canopy architecture was evaluated by the method of inclined point quadrat. The pre-grazing height in the paddocks were significantly different among treatments. RLAI influenced dry matter contents of green forage, leaf, stem and total, with the exception of dry matter of dead material, where the lowest values were observed for 0.8 RLAI. Thus, RLAI modifies canopy structure and is sensitive to canopy height changes throughout the year. Pasture regrowth is not compromised by residual leaf area indexes between 0.8 and 2.4, when climatic factors are not limiting.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.
Resumo:
The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.
Resumo:
Canopy characterization is essential for describing the interaction of a crop with its environment. The goal of this work was to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop, and to assess the feasibility of using these relationships as well as LAI-2000 readings to estimate LAI. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. Linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI mayor que 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley.
Resumo:
A field study in three vineyards in southern Queensland (Australia) was carried out to develop predictive models for individual leaf area and shoot leaf area of two cultivars (Cabernet Sauvignon and Shiraz) of grapevines (Vitis Vinifera L.). Digital image analysis was used to measure leaf vein length and leaf area. Stepwise regressions of untransformed and transformed models consisting of up to six predictor variables for leaf area and three predictor variables for shoot leaf area were carried out to obtain the most efficient models. High correlation coefficients were found for log10 transformed individual leaf and shoot leaf area models. The significance of predictor variables in the models varied across vineyards and cultivars, demonstrating the discontinuous and heterogeneous nature of vineyards. The application of this work in a grapevine modeling environment and in a dynamic vineyard management context are discussed. Sample sizes for quantification of individual leaf areas and areas of leaves on shoots are proposed based on target margins of errors of sampled data.
Resumo:
v. 46, n. 2, p. 140-148, apr./jun. 2016.
Resumo:
Aiming to obtain empirical models for the estimation of Syrah leaf area a set of 210 fruiting shoots was randomly collected during the 2013 growing season in an adult experimental vineyard, located in Lisbon, Portugal. Samples of 30 fruiting shoots were taken periodically from the stage of inflorescences visible to veraison (7 sampling dates). At the lab, from each shoot, primary and lateral leaves were separated and numbered according to node insertion. For each leaf, the length of the central and lateral veins was recorded and then the leaf area was measured by a leaf area meter. For single leaf area estimation the best statistical models uses as explanatory variable the sum of the lengths of the two lateral leaf veins. For the estimation of leaf area per shoot it was followed the approach of Lopes & Pinto (2005), based on 3 explanatory variables: number of primary leaves and area of the largest and smallest leaves. The best statistical model for estimation of primary leaf area per shoot uses a calculated variable obtained from the average of the largest and smallest primary leaf area multiplied by the number of primary leaves. For lateral leaf area estimation another model using the same type of calculated variable is also presented. All models explain a very high proportion of variability in leaf area. Our results confirm the already reported strong importance of the three measured variables (number of leaves and area of the largest and smallest leaf) as predictors of the shoot leaf area. The proposed models can be used to accurately predict Syrah primary and secondary leaf area per shoot in any phase of the growing cycle. They are inexpensive, practical, non-destructive methods which do not require specialized staff or expensive equipment.
Resumo:
Andean montane forests are one of the most diverse ecosystems on Earth, but are also highly vulnerable to climate change. Therefore, the link between plant distribution and ecosystem productivity is a critical point to investigate in these ecosystems. Are the patterns in productivity observed in montane forest due to species turnover along the elevational gradients? Methodological constraints keep this question unanswered. Also, despite their importance, belowground biomass remains poorly quantified and understood. I measured two plant functional traits in seedlings, root:shoot ratio and specific leaf area, to identify different strategies in growth and biomass allocation across elevations. A tradeoff in specific leaf area with elevation was found in only one species, and no generalized directional change was detected with elevations for root:shoot ratio. Lack of information for the ontogeny of the measured plant traits could confounding the analysis.
Resumo:
Specific leaf nitrogen (SLN, g/m(2)) is known to affect radiation use efficiency (RUE, g/MJ) in different crops, However, this association and importance have not been well established over a range of different nitrogen regimes for held-grown sunflower (Helianthus annuus L.). An experiment was conducted to investigate different combinations and rates of applied nitrogen on SLN, RUE, and growth of sunflower, A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and treated with five combinations of applied nitrogen, Greater nitrogen increased biomass, grain number, and yield, but did not affect harvest index energy-corrected for oil (0.4) or canopy extinction coefficient (0.88), Decreases in biomass accumulation under low nitrogen treatments were associated,vith reductions in leaf area index (LAI) and light interception, When SLN and RUE were examined together, both were less in the anthesis to physiological maturity period, but relatively stable between bud visible and anthesis, However, the effects of canopy SLN on RUE were confounded by high SLN in the top of the canopy and the crop maintaining SLN by reducing LAI, Measurements of leaf CO2 assimilation and theoretical analyses of RUE supported that RUE was related to SLN, The major effect of nitrogen on early growth of sunflower was mediated by leaf area and the distribution of SLN in the canopy rather than direct effects of canopy SLN on RUE alone. Greater responses of RUE to SLN are more evident later in growth, and may be related to the demand of nitrogen by the grain.
Resumo:
The objectives of this research were to evaluate leaf consumption and the developmental time of the larvae of Erynnyis ello (L., 1758) (Lepidoptera, Sphingidae) reared on cassava, in order to obtain information for the integrated management of this pest. The larvae were reared on excised cassava leaves in Petri dishes and later in gerbox, and kept in chambers at 24 ± 2 ºC and 75 ± 10% RH. The total leaf area consumed by the larva to complete its development was 589.67 cm2; each of the five instars consumed, respectively: 1.89 cm2; 5.74 cm2; 17.48 cm2; 76.66 cm2; and 487.90 cm2. The consumption by the first three instars was insignificant, and did not reach 5% altogether; the 4th represented 13%; the 5th presented a consumption significantly higher, about 82.7%. The total time for the larval development was 22.61 days, and the duration for each of the five larval instar was, respectively: 4.35; 3.19; 3.32; 4.52; and 4.94 days. The pre-pupal period lasted 2.29 days. Since the highest consumption is by the 5th instar larva, the control should be applied before this age to avoid heavier damages to the cassava crop.
Resumo:
Leaves from 120 canopy trees and 60 understory tree saplings growing in primary and secondary forests near Manaus, Brazil, were collected for determination of standing levels of herbivory (percent leaf area lost). Overall, levels of herbivory on leaves of central Amazonian trees were low. About one quarter of the leaves examined (n = 855) had no damage at all. In most other Neotropical sites studied the mean percentage of herbivory was found to vary between 5.7 and 13.1%, whereas in Manaus it was only 3.1%. The data presented here support the contention that levels of herbivore damage are positively related to soil fertility. No significant difference was found in herbivory levels between canopy trees and understory saplings. Also, there was no difference in damage between leaves from pioneer and late successional trees. Field assays of preference, however, revealed that leaves from pioneer trees are more palatable to leaf-cutting ants (Atta laevigata). This effect was dependent upon leaf age, being observed in mature leaves, but not in young leaves. The greater rate of leaf production in secondary forests may be a factor accounting for the greater abundance of leaf-cutting ants in secondary compared to primary forests.
Resumo:
The aim of this study was to test the hypothesis that the monodominant non-pioneer Peltogyne gracilipes, typically does not suffer density-dependent herbivory (Janzen-Connell model). Two components of intraspecific variation in leaf herbivory were measured: 1) the variation between individuals in the population at the same time and 2) the temporal variation in rates of damage to each individual. The study was carried out on Maracá Island, Roraima, Brazil in three plots (50 m χ 50 m) in each of three forest types: Peltogyne-rich forest (PRF), Peltogyne-poor forest (PPF), and forest without Peltogyne (FWP). Two other non-pioneer species (Ecclinusa guianensis and Pradosia surinamensis) were chosen for comparison because they were fairly abundant and their seedlings could be readily identified. The values of leaf area removed by herbivores of trees and seedlings of the three study species were in the range reported for other tropical tree species (2-16%, standing damage). There were no differences within species between forests. However, there was a significant difference among species but this was not correlated with seedling density. Peltogyne seedlings showed no evidence of density-dependent herbivory as predicted by the Janzen-Connell model despite the fact that adult trees were observed to suffer a mass defoliation in April 1992. This result suggests that Peltogyne may be dominant partly due to escape from herbivory in the early stages of its life although it may suffer occasional mass defoliation as an adult.