956 resultados para Leaf nutrients
Resumo:
Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens, produces polysaccharidases that degrade leaf components by generating nutrients believed to be essential for ant nutrition. We evaluated pectinase, amylase, xylanase, and cellulase production by L. gongylophorus in laboratory cultures and found that polysaccharidases are produced during fungal growth on pectin, starch, cellulose, xylan, or glucose but not cellulase, whose production is inhibited during fungal growth on xylan. Pectin was the carbon source that best stimulated the production of enzymes, which showed that pectinase had the highest production activity of all of the carbon sources tested, indicating that the presence of pectin and the production of pectinase are key features for symbiotic nutrition on plant material. During growth on starch and cellulose, polysaccharidase production level was intermediate, although during growth on xylan and glucose, enzyme production was very low. We propose a possible profile of polysaccharide degradation inside the nest, where the fungus is cultured on the foliar substrate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Commonly grown in tropical and sub-tropical regions, guava (Psidium guajava L.) is an important fruit crop of Brazil. It is cultivated on a large scale in São Paulo state, and covers about 6,500 hectares. As a result of the guava selection program developed at FCAV/UNESP, two new cultivars were created: 'Rica' and 'Paluma' with a high productivity, and also with higher nutritional requirement. Leaves analysis has become a powerful tool in mineral-nutrition research with fruit crops, not only to determine response to different nutrients, but also for diagnostic techniques in making fertilizer recommendations and assessing deficiency symptoms. Nutrient composition of the leaves varies depending on the leaf maturity, tree age, variety and nutrient supply. For the interpretation of analytical values, selection of the index tissue is important. The results of experiments conducted in the field during 1989-2000 were studied. The nutritional status was evaluated by annual leaf sampling, carried out at full bloom. Recent fully developed leaves, corresponding to the third pair (with the petiole) were collected, starting at the end of the branch, all around the tree, at a height of 1.5 m from the soil, with a total of 30 leaf pairs per sample. The yield was evaluated by weighing all the fruits in the useful area of each lot. Foliar chemical analysis showed excellent correlation with the fruit production. Through the results it was verified that the maximum yield was associated to the following levels: N = 22-26; P = 1.5-1.9; K = 17-20; Ca = 11-15; Mg = 2.5-3.5; S = 3.0-3.5 g kg -1; B = 20-25; Cu = 10-40; Fe = 50-150; Mn = 180-250; Zn = 25-35 mg kg-1 DW in the leaves of the 'Rica' guava and to N = 20-23; P = 1.4-1.8; K = 14-17; Ca = 7-11; Mg = 3.4-4.0; S = 2.5-3.5 g kg-1; B = 20-25; Cu = 20-40; Fe = 60-90; Mn = 40-80; Zn = 25-35 mg kg-1 DW in the leaves of the 'Paluma' guava.
Resumo:
With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The Bonus no. 2 was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L-1) and four K concentrations (4, 6, 8, and 10 mmol L-1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L-1) and K (10 mmol L-1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm-2). © 2013 Luiz Augusto Gratieri et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective was to evaluate the effects of omitting macronutrients in the nutrients solution on growth characteristics and nutritional status of eggplants. The treatments were complete nutrients solution and solutions with nutrient omission: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S). The experiment was carried out under greenhouse conditions with three replicates in a completely random design. Plant height, number of leaves per plant, leaf area, relative chlorophyll index, photosynthesis rate, stomatal conductance, dry matter, concentration levels of macronutrients in plant aerial part and root system, and nutritional disorders were evaluated. Omitting elements interfered in the concentration of elements in the various plant tissues and this had as consequences limited vegetative growth, reduced dry matter and led to the development of the typical deficiency symptoms of each element. Although potassium was the most demanded of all elements, nitrogen and calcium were the most growth limiting ones.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha(-1), and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha-1 respectively. The value for K is high for tropical forests and that for N is low. Nitrogen showed a significantly lower loading of throughfall and stemflow in HEM than in LEM forest, this being associated in the HEM forest with a greater abundance of epiphytic bryophytes which may absorb more N. Incident rainfall provided c. 35% of the gross input of P to the forest floor (i. e., rain-based plus small litter inputs), a surprisingly high contribution given the sandy P-poor soils. At the start of the wet season leaching of K from the canopy was particularly high. Calcium in the rain was also highest at this time, most likely due to washing off of dry-deposited Harmattan dusts. It is proposed that throughfall has an important `priming' function in the rapid decomposition of litter and mineralization of P at the start of the wet season. The contribution of P inputted from the atmosphere appears to be significant when compared to the rates of P mineralization from leaf litter.
Resumo:
In the strongly seasonal, but annually very wet, parts of the tropics, low-water availability in the short dry season leads to a semi-deciduous forest, one which is also highly susceptible to nutrient loss from leaching in the long wet season. Patterns in litterfall were compared between forest with low (LEM) and high (HEM) abundances of ectomycorrhizal trees in Korup National Park, Cameroon, over 26 months in 1990–92. Leaf litter was sorted into 26 abundant species which included six ectomycorrhizal species, and of these three were the large grove-forming trees Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia moreliana. Larger-tree species shed their leaves with pronounced peaks in the dry season, whereas other species had either weaker dependence, showed several peaks per year, or were wet-season shedders. Although total annual litterfall differed little between forest types, in the HEM forest (dominated by M. bisulcata) the dry-season peak was more pronounced and earlier than that in the LEMforest. Species differed greatly in their mean leaf litterfall nutrient concentrations, with an approx. twofold range for nitrogen and phosphorus, and 2.5–3.5-fold for potassium, magnesium and calcium. In the dry season, LEM and HEM litter showed similar declines in P and N concentration, and increases in K and Mg; some species, especially M. bisculcata, showed strong dry-wet season differences. The concentration of P (but not N) was higher in the leaf litter of ectomycorrhizal than nonectomycorrhizal species. Retranslocation of N and P was lower among the ectomycorrhizal than nonectomycorrhizal species by approx. twofold. It is suggested that, within ectomycorrhizal groves on this soil low in P, a fast decomposition rate with minimal loss of mineralized P is possible due to the relatively high litter P not limiting the cycle at this stage, combined with an efficient recapture of released P by the surface organic layer of ectomycorrhizas and fine roots. This points to a feedback between two essential controlling steps (retranslocation and mineralization) in a tropical rain forest ecosystem dominated by ectomycorrhizal trees.
Resumo:
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.
Resumo:
This paper describes the first systematic study of nutritional deficiencies of greater yam (Dioscorea alata). Yam plants (cv. 'Mahoa'a') were propagated from tuber discs and grown in nutrient solution, with nutrients supplied following a modified programmed nutrient-addition method. After an establishment period of four weeks, deficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), and molybdenum (Mo) were induced by omitting the relevant nutrient from the solution. Foliar symptoms were recorded photographically. Notably, deficiencies of the mobile macronutrients failed to induce senescence of oldest leaves, while vine growth and younger leaves were affected. Leaf blades of the main stem were sampled in sequence and analyzed chemically, providing the distribution of each nutrient from youngest to oldest leaves in both adequately supplied and deficient plants. The nutrient-concentration profiles, together with the visible symptoms, indicated that little remobilization of mobile macronutrients had occurred. For both macro- and micronutrients, young leaves gave the best separation of nutrient concentrations between well-nourished and deficient plants.
Resumo:
The subtropical hardwood forests of southern Florida are formed by 120 frost-sensitive, broadleaved angiosperm species that range throughout the Caribbean. Previous work on a series of small sized forest component patches of a 20 km2, forest preserve in northern Key Largo indicate that a shift in species composition was associated with a 100 year forest developmental sequence, and this shift was associated with an increasingly evergreen canopy. This document investigates the underlying differences of the biology of trees that live in this habitat, and is specifically focused on the impact of leaf morphology on changing nutrient cycling patterns. Measurements of the area, thickness, dry mass, nutrient content and longevity of several leaves from 3-4 individuals of ten species were conducted in combination with a two-year leaf litter collection and nutrient analysis to determine that species with thicker, denser leaves cycled scarce nutrients up to 2-3 times more efficiently than thin leaved tree species, and the leaf thickness/density index predicts role in forest development in a parallel direction as the index predicts nutrient cycling efficiency. A three year set of observations on the relative abundance of new leaves, flowers and fruits of the same tree species provides an opportunity to evaluate the consequences the leaf morphology/nutrient cycling/forest development relationship to forest habitat quality. Results of the three documents support a mechanistic link between forest development and nutrient cycling, and suggests that older forests are likely to be better habitats based on the availability of valuable forest products like new leaves, flowers, and fruits throughout the year.