999 resultados para Leaf elongation rate


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The organic fertilizer can be a viable alternative in the production of forage grasses, however there is little information regarding doses and composition of the major organic fertilizers. The aim of this paper was to verify the influence of the different doses of organic compost produced from two types of poultry litter on the structural, morphogenetic and productive characteristics of Brachiaria brizantha cv 'Piatã'. The experiment was conducted in a greenhouse in a completely randomized design in a factorial scheme l with parcel subdivided in time. The parcels were composed by six treatments: two types of compost (poultry litter based in sugar cane and napier grass) in three doses (100, 200 and 300kg ha-1 equivalent N.) and the subparcels by the four different periods of cut. The composts were applied in a unique dose, after the uniformization cut, at the quantities: 11,36 and 11,83, 22,73 and 23,67, 34,09 and 35,50 g pot-1 for the poultry litter based in sugar cane and napier grass, respectively which are equivalent to the rates of 0, 100, 200 and 300kg ha-1 of N. The variables measured were: dry matter production (DMP), leaf appearance rate (LApR), phyllochron, leaf elongation dose (LER) and shoots elongation rate (SER), number of green leaves (NGL), final size of the leaf (FSL). No significant difference between the types of composts and in the interaction compost x doses was observed, thus, both could be used without the risk of loss in the use of the nutrients by the plants evaluated in the experiment. There was a significant difference between the DMP, LApR, phyllochron, LER, SER, NGL and FSL because of the increasing rates of nitrogen, followed by a linear model of prediction. The effect of the periods of slaughter was also observed, where the slaughters carried out in the summer presented a better performance over the morphogenetic and structural features evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A field trial was conducted designed in a completely randomized block in a 4 x 3 factorial arrangement to evaluate the application of nitrogen doses (N) (0, 40, 80 and 160 kg/ha) on the morphogenical characteristics and dry matter partition of three forage grasses (Panicum maximum cvs. Mombasa and Tanzania and Brachiaria sp. Hybrid Mulato). The leaf appearance (LAR, leaf/day) and stretching (LER; mm/day) rates, the number of green leaves per tiller (NLT) and the average weight of tillers (MTW; g) presented s positive linear response to the N dose while the phyllochron (Phil; day/leaves) showed a negative linear response. The highest LER, IAL and final leaf length (FLL; cm) occurred in the Mombaca and Tanzania grasses, while the highest LAR occurred in the Mulato grass. There was a negative quadratic effect of the N dose on the stem elongation rate (SER; mm/day) and LF. The Mombaca and Tanzania grasses presented the highest SER; however, in just two forages. The production of total dry matter (TDM; kg/ha), leaves (LDM; kg/ha) and stems (SDM; kg/ha) increased linearly and quadratically with the N dose, respectively, for the Mombaca and Tanzania grasses. There was a high positive correlation among DM, LDM and SDM and the Mombaca grass MTW. The dry matter production and morphogenic characteristics were influenced by the nitrogen fertilization as a result of the substantial increase in the flow of tissues stimulated by fertilization, proving the importance of N for forage biomass accumulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the spring, the understanding of regrowth in basal and aerial tillers of deferred pasture in winter it is necessary. Thus, the objective was to evaluate the morphogenesis and herbage accumulation during spring in Brachiaria decumbens cv. Basilisk (signalgrass) pasture used under deferred grazing in winter. The basal and aerial tillers in same pasture were evaluated. The signalgrass was managed with grazing cattle and with an average height of 25 cm. The randomized block design with three replications was adopted. The leaf appearance rate, phyllochron and the numbers of expanded, expanding and live leaves did not differ between basal and aerial tillers. The aerial tiller possessed lower rates of leaf senescence, of leaf elongation and of stem elongation, as well as lower number of dead leaf and stem and leaf lamina lengths, compared to basal tiller. The leaf lifespan was higher in aerial tillers than at basal. The basal tiller also contributed to higher rates of tissue growth and forage accumulation in pasture when compared to aerial tiller. After deferred grazing during the spring, the aerial tiller has low participation in forage production of signalgrass pasture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eukaryotic elongation factor 1 (eEF-1) contains the guanine nucleotide exchange factor eEF-1B that loads the G protein eEF-1A with GTP after each cycle of elongation during protein synthesis. Two features of eEF-1B have not yet been elucidated: (i) the presence of the unique valyl-tRNA synthetase; (ii) the significance of target sites for the cell cycle protein kinase CDK1/cyclin B. The roles of these two features were addressed by elongation measurements in vitro using cell-free extracts. A poly(GUA) template RNA was generated to support both poly(valine) and poly(serine) synthesis and poly(phenylalanine) synthesis was driven by a poly(uridylic acid) template. Elongation rates were in the order phenylalanine > valine > serine. Addition of CDK1/cyclin B decreased the elongation rate for valine whereas the rate for serine and phenylalanine elongation was increased. This effect was correlated with phosphorylation of the eEF-1δ and eEF-1γ subunits of eEF-1B. Our results demonstrate specific regulation of elongation by CDK1/cyclin B phosphorylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the fibrillogenesis of synthetic amyloid beta-protein-(1-40) fragment (A beta) in 0.1 M HCl. At low pH, A beta formed fibrils at a rate amenable to detailed monitoring by quasi-elastic light-scattering spectroscopy. Examination of the fibrils with circular dichroism spectroscopy and electron microscopy showed them to be highly similar to those found in amyloid plaques. We determined the hydrodynamic radii of A beta aggregates during the entire process of fibril nucleation and growth. Above an A beta concentration of approximately 0.1 mM, the initial rate of elongation and the final size of fibrils were independent of A beta concentration. Below an A beta concentration of 0.1 mM, the initial elongation rate was proportional to the peptide concentration, and the resulting fibrils were significantly longer than those formed at higher concentration. We also found that the surfactant n-dodecylhexaoxyethylene glycol monoether (C12E6) slowed nucleation and elongation of fibrils in a concentration-dependent manner. Our observations are consistent with a model of A beta fibrillogenesis that includes the following key steps: (i) peptide micelles form above a certain critical A beta concentration, (ii) fibrils nucleate within these micelles or on heterogeneous nuclei (seeds), and (iii) fibrils grow by irreversible binding of monomers to fibril ends. Interpretation of our data enabled us to determine the sizes of fibril nuclei and A beta micelles and the rates of fibril nucleation (from micelles) and fibril elongation. Our approach provides a powerful means for the quantitative assay of A beta fibrillogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Senescence-associated coordination in amounts of enzymes localized in different cellular compartments were determined in attached leaves of young wheat (Triticum aestivum L. cv. Arina) plants. Senescence was initiated at the time of full leaf elongation based on declines in total RNA and soluble protein. Removal of N from the growth medium just at the time of full leaf elongation enhanced the rate of senescence. Sustained declines in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), and a marked decrease in the rbcS transcripts, just after full leaf elongation indicated that Rubisco synthesis/degradation was very sensitive to the onset of senescence. Rubisco activase amount also declined during senescence but the proportion of rca transcript relative to the total poly A RNA pool increased 3-fold during senescence. Thus, continued synthesis of activase may be required to maintain functional Rubisco throughout senescence. N stress led to declines in the amount of proteins located in the chloroplast, the peroxisome and the cytosol. Transcripts of the Clp protease subunits also declined in response to N stress, indicating that Clp is not a senescence-specific protease. In contrast to the other proteins, mitochondrial NADH-glutamate dehydrogenase (EC 1.4.1.2) was relatively stable during senescence and was not affected by N stress. During natural senescence with adequate plant nitrate supply the amount of nitrite reductase (EC 1.7.7.1) increased, and those of glutamine synthetase (EC 1.4.7.1) and glutamate synthase (EC 6.3.1.2) were stable. These results indicated that N assimilatory capacity can continue or even increase during senescence if the substrate supply is maintained. Differential stabilities of proteins, even within the same cellular compartment, indicate that proteolytic activity during senescence must be highly regulated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leaf area growth and nitrogen concentration per unit leaf area, N-a (g m(-2) N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot(-1)) and five rates (0.5-6.0 g pot(-1)) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, P a,, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (N-a or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between P-max and N-a. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leaf bags of fine and coarse mesh were placed at two locations, one with an open tree canopy, the other with a closed tree canopy, in Pynn’s Brook on June 30th 2015. Bags were collected after 2, 30, 37 and 44 days. After collection, invertebrates were counted and leaf material remaining was determined to measure leaf breakdown rate. There was no significant difference in leaf mass remaining (R) between the two sites. Comparisons between mesh types found a difference in leaf breakdown at two collection days. The difference at 2 days was small (2.7%) and may not be biologically meaningful. At 37 days, the difference was larger (8.41%) and may be related to a larger proportion of shredder taxa, seen in coarse mesh bags, or higher absolute numbers of invertebrates. The invertebrate community was dominated by Diptera spp. across all collection days and mesh types, but after 37 days, communities in coarse mesh bags had a higher proportion of shredder orders than did fine mesh bags.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We estimate litter production and leaf decomposition rate in a cerradão area, physiognomy little studied and very threatened in São Paulo State. During the period of study, litter production was 5646.9 kg.ha-1.year-1, which the 'leaf' fraction corresponded to 4081.2 kg.ha¹.year¹; the 'branch' fraction, to 1066.1 kg.ha-1.year-1; the 'reproductive structures' fraction, to 434.1 kg.ha-1.year-1; and the 'miscellaneous' fraction to 65.5 kg.ha-1.year-1. Litter production was highly seasonal and negatively correlated with relative humidity and air temperature. Leaf production was negatively correlated with relative humidity, rainfall, and air temperature. There was no significant difference between litter production found in this study and those in two other sites with cerradão and semideciduous forest, but these physiognomies differed significantly from the cerrado sensu stricto. Leaf decomposition rate (K) was 0.56. Half-life of the decomposing material was 1.8 years and turnover time was 2.3 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The material in genebanks includes valuable traditional varieties and landraces, non-domesticated species, advanced and obsolete cultivars, breeding lines and genetic stock. It is the wide variety of potentially useful genetic diversity that makes collections valuable. While most of the yield increases to date have resulted from manipulation of a few major traits (such as height, photoperiodism, and vernalization), meeting future demand for increased yields will require exploitation of novel genetic resources. Many traits have been reported to have potential to enhance yield, and high expression of these can be found in germplasm collections. To boost yield in irrigated situations, spike fertility must be improved simultaneously with photosynthetic capacity. CIMMYT's Wheat Genetic Resources program has identified a source of multi-ovary florets, with up to 6 kernels per floret. Lines from landrace collections have been identified that have very high chlorophyll concentration, which may increase leaf photosynthetic rate. High chlorophyll concentration and high stomatal conductance are associated with heat tolerance. Recent studies, through augmented use of seed multiplication nurseries, identified high expression of these traits in bank accessions, and both traits were heritable. Searches are underway for drought tolerance traits related to remobilization of stem fructans, awn photosynthesis, osmotic adjustment, and pubescence. Genetic diversity from wild relatives through the production of synthetic wheats has produced novel genetic diversity.