995 resultados para Lead alloys.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The effect of consecutive cyclic polarization in de-aerated 0.5 M NaOH solutions on the surface microstructure of mechanically polished Cu-Al-Ag alloys of different compositions and heat treatments has been studied using optical microscopy, SEM and EDS. The current peaks of the cyclic polarization curves do not depend on the alloy composition in the composition range studied. The repetitive potential scans between H2 and O2 evolution in alkaline media lead to preferential dissolution of aluminium, the roughness and phase composition of the surface of the alloys changing significantly. The quasistationary I-E curves of the different Cu-Al-Ag alloys studied consist in the superposition of the quasistationary I-E curves of high-purity Cu and Ag, the EDS microanalysis showing that aluminium is not present on the surface of the alloy in these conditions.
Resumo:
Human health and environmental concerns are not usually considered at the same time. Tin-lead solders are still widely used in several countries, including Brazil, by manufacturers of electronic assemblies. One of the options to reduce or eliminate lead from the manufacturing environment is its replacement with lead-free alloys. This paper applies emergy synthesis and the DALY indicator (Disability Adjusted Life Years) to assess the impact of manufacturing soft solder using tin, lead and other metals on the environment and on human health. The results are presented together with the company's financial results and the results calculated from the Brazilian statistical value of life. The calculation of emergy per unit showed that more resources are used to produce one ton of lead-free solders than to produce one ton of tin-lead solders, with and without the use of consumer waste recovered through a reverse logistics system. The assessment of air emissions during solder production shows that the benefits of the lead-free solution are limited to the stages of manufacturing and assembling. The tin-lead solder appears as the best option in terms of resource use efficiency and with respect to emissions into the atmosphere when the mining stage is included. A discussion on the influence of the system's boundaries on the decision-making process for materials substitution is presented. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In prosthesis, tribochemical reactions occur at the stem/bone interface. When coupled with micromotions it can lead to the loosening of the implant, osteolysis, release of metal ion and wear particles. The effect of these movements and the underlying mechanisms are quite unknown. This work investigates the tribocorrosion behavior of etched Ti6Al4V alloys under reciprocating sliding. Tests were performed in a phosphate buffer solution (PBS) containing proteins. A normal load of 1 N and anodic potentials of -0.1 and +0.5 V/SCE were applied. The destruction pathways of the top surface layers (adsorbed proteins, passive film) were studied. The results showed that the favorable/undesired effect of proteins in solution depends on the characteristics of the passive film under a mechanical stress. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Several alloys have been used for prosthodontics restorations in the last years. These alloys have a number of metals that include gold, palladium, silver, nickel, cobalt, chromium and titanium and they are used in oral cavity undergo several corrosion. Corrosion can lead to poor esthetics, compromise of physical properties, or increased biological irritation. The objective of this study was evaluated corrosion resistance of two alloys Ni-Cr and Ni-Cr-Ti in three types of mouthwashes with different active ingredients: 0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride, 0.05% sodium fluoride + 0.03% triclosan (with fluor) and 0.12% chlorohexidine digluconate. The potentiodynamic curves were performed by means of an EG&G PAR 283 potentiostat/galvanostat. The counter electrode was a platinum wire and reference electrode was an Ag/AgCl, KCl saturated. Before each experiment, working electrodes were mechanically polished with 600 and 1200 grade papers, rinsed with distilled water and dried in air. All experiments were carried out at 37.0oC in conventional three-compartment double wall glass cell containing mouthwashes. The microstructures of two alloys were observed in optical microscopy. Analysis of curves showed that Ni-Cr alloy was less reactive in the presence of 0.12% chlorohexidine digluconate while Ni-Cr-Ti alloy was more sensitive for others two types of mouthwashes (0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride and 0.05% sodium fluoride + 0.03% triclosan). This occurred probably due presence of titanium in this alloy. Microstructural analysis reveals the presence of dendritic and eutectic microstructures for NiCr and Ni-Cr-Ti, respectively.
Resumo:
Mixtures of 2-(4,5,6,7-tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (F4BImNN) and 2-(benzi-midazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (BImNN.) crystallize as solid solutions (alloys) across a wide range of binary compositions. (F4BImNN)(x)(BImNN)((1-x)) with x < 0.8 gives orthorhombic unit cells, while x >= 0.9 gives monoclinic unit cells. In all crystalline samples, the dominant intermolecular packing is controlled by one-dimensional (1D) hydrogen-bonded chains that lead to quasi-1D ferromagnetic behavior. Magnetic analysis over 0.4-300 K indicates ordering with strong 1D ferromagnetic exchange along the chains (J/k = 12-22 K). Interchain exchange is estimated to be 33- to 150-fold weaker, based on antiferromagnetic ordered phase formation below Neel temperatures in the 0.4-1.2 K range for the various compositions. The ordering temperatures of the orthorhombic samples increase linearly as (1 - x) increases from 0.25 to 1.00. The variation is attributed to increased interchain distance corresponding to decreased interchain exchange, when more F4BImNN is added into the orthorhombic lattice. The monoclinic samples are not part of the same trend, due to the different interchain arrangement associated with the phase change.
Resumo:
This thesis work encloses activities carried out in the Laser Center of the Polytechnic University of Madrid and the laboratories of the University of Bologna in Forlì. This thesis focuses on the superficial mechanical treatment for metallic materials called Laser Shock Peening (LSP). This process is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The innovation aspect of this work is the LSP application to specimens with extremely low thickness. In particular, after a bibliographic study and comparison with the main treatments used for the same purposes, this work analyzes the physics of the operation of a laser, its interaction with the surface of the material and the generation of the surface residual stresses which are fundamentals to obtain the LSP benefits. In particular this thesis work regards the application of this treatment to some Al2024-T351 specimens with low thickness. Among the improvements that can be obtained performing this operation, the most important in the aeronautic field is the fatigue life improvement of the treated components. As demonstrated in this work, a well-done LSP treatment can slow down the progress of the defects in the material that could lead to sudden failure of the structure. A part of this thesis is the simulation of this phenomenon using the program AFGROW, with which have been analyzed different geometric configurations of the treatment, verifying which was better for large panels of typical aeronautical interest. The core of the LSP process are the residual stresses that are induced on the material by the interaction with the laser light, these can be simulated with the finite elements but it is essential to verify and measure them experimentally. In the thesis are introduced the main methods for the detection of those stresses, they can be mechanical or by diffraction. In particular, will be described the principles and the detailed realization method of the Hole Drilling measure and an introduction of the X-ray Diffraction; then will be presented the results I obtained with both techniques. In addition to these two measurement techniques will also be introduced Neutron Diffraction method. The last part refers to the experimental tests of the fatigue life of the specimens, with a detailed description of the apparatus and the procedure used from the initial specimen preparation to the fatigue test with the press. Then the obtained results are exposed and discussed.
Resumo:
Lead-gold eutectic (LGE) has been recently proposed as an alternative target material for high power spallation sources. In order to compare the corrosive properties of LGE to the better-studied eutectic of lead-bismuth (LBE), an isothermal twin-loop made of SS 316L was built and operated at the Institute of Physics of the University of Latvia. We have measured the concentration of steel alloying elements dissolved in both alloys at the end of two test campaigns via ICP-OES. In case of LGE, a pronounced concentration increase of Fe, Ni, Mn and Cr is found in the liquid metal, which is significantly higher compared to LBE. Similar results were obtained during complementary investigations on material samples exposed to both alloys in this twin-loop at 400 ◦C and 450 ◦C. These findings indicate that in contact with LGE, SS 316L steel suffers from substantial chemical attack. Detailed investigations using structure materials other than SS 316L have to be undertaken before qualifying LGE as a serious alternative to LBE.
Resumo:
We report a trace element - Pb isotope analytical (LIA) database on the "Singen Copper", a peculiar type of copper found in the North Alpine realm, from its type locality, the Early Bronze Age Singen Cemetery (Germany). What distinguishes “Singen Copper” from other coeval copper types? (i) is it a discrete metal lot with a uniform provenance (if so, can its provenance be constrained)? (ii) was it manufactured by a special, unique metallurgical process that can be discriminated from others? Trace element concentrations can give clues on the ore types that were mined, but they can be modified (more or less intentionally) by metallurgical operations. A more robust indicator are the ratios of chemically similar elements (e.g. Co/Ni, Bi/Sb, etc.), since they should remain nearly constant during metallurgical operations, and are expected to behave homogeneously in each mineral of a given mining area, but their partition amongst the different mineral species is known to cause strong inter-element fractionations. We tested the trace element ratio pattern predicted by geochemical arguments on the Brixlegg mining area. Brixlegg itself is not compatible with the Singen Copper objects, and we only report it because it is a rare instance of a mining area for which sufficient trace element analyses are available in the literature. We observe that As/Sb in fahlerz varies by a factor 1.8 above/below median; As/Sb in enargite varies by a factor of 2.5 with a 10 times higher median. Most of the 102 analyzed metal objects from Singen are Sb-Ni-rich, corresponding to “antimony-nickel copper” of the literature. Other trace element concentrations vary by > 100 times, ratios by factors > 50. Pb isotopic compositions are all significantly different from each other. They do not form a single linear array and require > 3 ore batches that certainly do not derive from one single mining area. Our data suggest a heterogeneous provenance of “Singen copper”. Archaeological information limits the scope to Central European sources. LIA requires a diverse supply network from many mining localities, including possibly Brittany. Trace element ratios show more heterogeneity than LIA; this can be explained either by deliberate selection of one particular ore mineral (from very many sources) or by processing of assorted ore minerals from a smaller number of sources, with the unintentional effect that the quality of the copper would not be constant, as the metallurgical properties of alloys would vary with trace element concentrations.
Resumo:
En los últimos años ha habido una fuerte tendencia a disminuir las emisiones de CO2 y su negativo impacto medioambiental. En la industria del transporte, reducir el peso de los vehículos aparece como la mejor opción para alcanzar este objetivo. Las aleaciones de Mg constituyen un material con gran potencial para el ahorro de peso. Durante la última década se han realizado muchos esfuerzos encaminados a entender los mecanismos de deformación que gobiernan la plasticidad de estos materiales y así, las aleaciones de Mg de colada inyectadas a alta presión y forjadas son todavía objeto de intensas campañas de investigación. Es ahora necesario desarrollar modelos que contemplen la complejidad inherente de los procesos de deformación de éstos. Esta tesis doctoral constituye un intento de entender mejor la relación entre la microestructura y el comportamiento mecánico de aleaciones de Mg, y dará como resultado modelos de policristales capaces de predecir propiedades macro- y microscópicas. La deformación plástica de las aleaciones de Mg está gobernada por una combinación de mecanismos de deformación característicos de la estructura cristalina hexagonal, que incluye el deslizamiento cristalográfico en planos basales, prismáticos y piramidales, así como el maclado. Las aleaciones de Mg de forja presentan texturas fuertes y por tanto los mecanismos de deformación activos dependen de la orientación de la carga aplicada. En este trabajo se ha desarrollado un modelo de plasticidad cristalina por elementos finitos con el objetivo de entender el comportamiento macro- y micromecánico de la aleación de Mg laminada AZ31 (Mg-3wt.%Al-1wt.%Zn). Este modelo, que incorpora el maclado y tiene en cuenta el endurecimiento por deformación debido a las interacciones dislocación-dislocación, dislocación-macla y macla-macla, predice exitosamente las actividades de los distintos mecanismos de deformación y la evolución de la textura con la deformación. Además, se ha llevado a cabo un estudio que combina difracción de electrones retrodispersados en tres dimensiones y modelización para investigar el efecto de los límites de grano en la propagación del maclado en el mismo material. Ambos, experimentos y simulaciones, confirman que el ángulo de desorientación tiene una influencia decisiva en la propagación del maclado. Se ha observado que los efectos no-Schmid, esto es, eventos de deformación plástica que no cumplen la ley de Schmid con respecto a la carga aplicada, no tienen lugar en la vecindad de los límites de baja desorientación y se hacen más frecuentes a medida que la desorientación aumenta. Esta investigación también prueba que la morfología de las maclas está altamente influenciada por su factor de Schmid. Es conocido que los procesos de colada suelen dar lugar a la formación de microestructuras con una microporosidad elevada, lo cuál afecta negativamente a sus propiedades mecánicas. La aplicación de presión hidrostática después de la colada puede reducir la porosidad y mejorar las propiedades aunque es poco conocido su efecto en el tamaño y morfología de los poros. En este trabajo se ha utilizado un enfoque mixto experimentalcomputacional, basado en tomografía de rayos X, análisis de imagen y análisis por elementos finitos, para la determinación de la distribución tridimensional (3D) de la porosidad y de la evolución de ésta con la presión hidrostática en la aleación de Mg AZ91 (Mg- 9wt.%Al-1wt.%Zn) colada por inyección a alta presión. La distribución real de los poros en 3D obtenida por tomografía se utilizó como input para las simulaciones por elementos finitos. Los resultados revelan que la aplicación de presión tiene una influencia significativa tanto en el cambio de volumen como en el cambio de forma de los poros que han sido cuantificados con precisión. Se ha observado que la reducción del tamaño de éstos está íntimamente ligada con su volumen inicial. En conclusión, el modelo de plasticidad cristalina propuesto en este trabajo describe con éxito los mecanismos intrínsecos de la deformación de las aleaciones de Mg a escalas meso- y microscópica. Más especificamente, es capaz de capturar las activadades del deslizamiento cristalográfico y maclado, sus interacciones, así como los efectos en la porosidad derivados de los procesos de colada. ---ABSTRACT--- The last few years have seen a growing effort to reduce CO2 emissions and their negative environmental impact. In the transport industry more specifically, vehicle weight reduction appears as the most straightforward option to achieve this objective. To this end, Mg alloys constitute a significant weight saving material alternative. Many efforts have been devoted over the last decade to understand the main mechanisms governing the plasticity of these materials and, despite being already widely used, high pressure die-casting and wrought Mg alloys are still the subject of intense research campaigns. Developing models that can contemplate the complexity inherent to the deformation of Mg alloys is now timely. This PhD thesis constitutes an attempt to better understand the relationship between the microstructure and the mechanical behavior of Mg alloys, as it will result in the design of polycrystalline models that successfully predict macro- and microscopic properties. Plastic deformation of Mg alloys is driven by a combination of deformation mechanisms specific to their hexagonal crystal structure, namely, basal, prismatic and pyramidal dislocation slip as well as twinning. Wrought Mg alloys present strong textures and thus specific deformation mechanisms are preferentially activated depending on the orientation of the applied load. In this work a crystal plasticity finite element model has been developed in order to understand the macro- and micromechanical behavior of a rolled Mg AZ31 alloy (Mg-3wt.%Al-1wt.%Zn). The model includes twinning and accounts for slip-slip, slip-twin and twin-twin hardening interactions. Upon calibration and validation against experiments, the model successfully predicts the activity of the various deformation mechanisms and the evolution of the texture at different deformation stages. Furthermore, a combined three-dimensional electron backscatter diffraction and modeling approach has been adopted to investigate the effect of grain boundaries on twin propagation in the same material. Both experiments and simulations confirm that the misorientation angle has a critical influence on twin propagation. Non-Schmid effects, i.e. plastic deformation events that do not comply with the Schmid law with respect to the applied stress, are absent in the vicinity of low misorientation boundaries and become more abundant as misorientation angle increases. This research also proves that twin morphology is highly influenced by the Schmid factor. Finally, casting processes usually lead to the formation of significant amounts of gas and shrinkage microporosity, which adversely affect the mechanical properties. The application of hydrostatic pressure after casting can reduce the porosity and improve the properties but little is known about the effects on the casting’s pores size and morphology. In this work, an experimental-computational approach based on X-ray computed tomography, image analysis and finite element analysis is utilized for the determination of the 3D porosity distribution and its evolution with hydrostatic pressure in a high pressure diecast Mg AZ91 alloy (Mg-9wt.%Al-1wt.%Zn). The real 3D pore distribution obtained by tomography is used as input for the finite element simulations using an isotropic hardening law. The model is calibrated and validated against experimental stress-strain curves. The results reveal that the pressure treatment has a significant influence both on the volume and shape changes of individuals pores, which have been precisely quantified, and which are found to be related to the initial pore volume. In conclusion, the crystal plasticity model proposed in this work successfully describes the intrinsic deformation mechanisms of Mg alloys both at the mesoscale and the microscale. More specifically, it can capture slip and twin activities, their interactions, as well as the potential porosity effects arising from casting processes.
Resumo:
A trace of beryllium can lead to dramatic grain coarsening in Mg-Al alloys at normal cooling rates. It is, however, unclear whether this effect applies to aluminium-free magnesium alloys or not. This work shows that a trace of beryllium also causes considerable grain coarsening in Mg-Zn, Mg-Ca, Mg-Ce and Mg-Nd alloys and hinders grain refinement of magnesium alloys by zirconium as well. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Soldering alloys based oft the Sn-Cu alloy system are amongst the most favourable lead-free alternatives due to a range of attractive properties. Trace additions of Ni have been found to significantly improve the soldering characteristics of these alloys (reduced bridging etc.). This paper examines the mechanisms underlying the improvement in soldering properties of Sn-0.7 mass%Cu eutectic alloys modified with concentrations of Ni ranging front 0 to 1000 ppm. The alloys were investigated by thermal analysis during solidification, as well as optical/SEM microanalyses of fully solidified samples anti samples quenched during solidification. It is concluded that Ni additions dramatically alter the nucleation patterns and solidification behaviour of the Sn-Cu6Sn5 eutectic anti that these changes are related to the superior soldering characteristics of the Ni-modified Sn-0.7 mass%Cu alloys.
Resumo:
The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.