133 resultados para Lates calcifer
Resumo:
Catch effort data on which fisheries management regulations are sometimes based are not available for most lakes in Uganda. However, failure to regulate fishing gears and methods has been a major cause of collapse of fisheries in the country. Fisheries have been damaged by destructive and non-selective fishing gears and methods such as trawling and beach seining, by use of gill nets of mesh size which crop immature fish and by introduction of mechanised fishing. Selectivity of the gears used to crop Lates niloticus 1. (Nile perch), Oreochromis niloticus 1. (Nile tilapia) and Rastrineobola argentea (Mukene) which are currently the most important commercial species in Uganda were examined in order to recommend the most suitable types, sizes and methods that should be used in exploiting these fisheries . Gill nets of less than 127 mm mainly cropped immature Nile ti1apia and Nile perch. To protect these fisheries, the minimum mesh size of gill nets should be set at 127 mm. Seine nets of 5 mm do catch high proportions of immature Mukene while those of 10 mm catch mainly mature Mukene. When operated inshore, both sizes catch immature Nile perch and Nile ti1apia as by-catch. To protect the Mukene fishery and avoid catching immature byecatch, a minimum mesh size of the Mukene net should have been 10 mm operated as Lampara type net offshore but since most fishennen have been using the 5 mm seine for over five years the minimum size should not be allowed to drop below 5 mm pending further thorough investigations. Beach seining, trawling and are destructive to fisheries and should be prohibited until data that may justify their use is available.
Resumo:
Lakes Victoria, Kyoga and Nabugabo had a similar native fish fauna of high species diversity. stocks of most of the native species declined rapidly and some completely disappeared after Nile perch was introduced and became well established. Although, overexploitation of the fish stocks, competition between introduced and native tilapiines and environmental degradation contributed to the reduction in fish stocks, predation by the Nile perch has contributed much to the recent drastic reductions in fish stock and could even drive the stocks to a total collapse. Nile perch is also currently the most important commercial species in Lakes victoria, Kyoga and Nabugabo and the stability of its stocks is important in the overall sustainability of the fisheries of these lakes. The question that was to be examined in this paper was whether the fisheries of Lakes Victoria, Kyogaand Nabugabo would stabilize and sustain production in the presence of high predation pressure by the Nile perch or whether the Nile perch would drive the fish stocks including itself to a collapse. I t was assumed that Nile perch driven changes in Lakes Victoria, Kyoga and Nabugabo would be driven to a level beyond which they would not change further. This would be followed by recovery and stability or the changes would continue to a point of collapse. It was assumed that Lake Albert represented the ideal stable state. The changes in the new habitats expected to be driven through a major change due to Nile perch predation to a stage where there would be no further changes. After this, a feedback mechanism would move the driven variable towards recovery. The variables would then stabilize and oscillate will an amplitude which approximates to what would be recorded in Lake Albert. Alternatively, the changes would proceed to a stage where the fishery would collapse. The specific hypothesis was that fish species composition and diversity, prey selection by the Nile perch and life history characteristics of the Nile perch in the new habitats would change and stabilize
Resumo:
Nile perch were introduced into Lake Kyoga in the mid·1950s from Lake Albert. Murchison Falls on the River Nile, between the two lakes, prevented Nile Perch and other elements of the typical nilotic fish population from naturally reaching Lake Kyoga. The introduction has been successful and considerable stocks of Nile Perch now exist in Lake Kyoga. In 1967, 13,000 tons of Nile Perch were estimated to have been landed by the commercial fishermen, fish of 200 lb. being now caught and specimens of 100 lb. being fairly common. Large Nile perch are caught commercially on long lines baited with live Protopterus' spp. or Clarias spp. Large mesh gillnets uccasionally take Nile Perch of up to 30 lb., but the high cost of the nets does not, at the moment, appear to justify this method of fishing; a 10 in. net, stretched 100 yards long (unmounted). 15 meshes deep and 60-ply nylon. costs approximately U. Shs. 300. The long·lines used are extremely simple and cheap to make, but considerable labour is needed to catch bait. Small Protopterus are normally caught by turning over floating rafts of grasses and papyrus, and extracting the fish from the root mass; this is hard and dirty work. Other small fish, more readily available, do not, according to fishermen, work as well, possibly because they are not as durable as the Protopterus or Clarias. Dead bait is never used.
Resumo:
Both in terms of commercial landings and biological importance, the Nile Perch is one of the most prominent fish in Lake Albert. It can bear considerable further exploitation, is the source of stockings elsewhere, and it is, therefore, important to know whether more than one species is being dealt with, and, if so, what differences there are in the ecology of the different species.
Resumo:
The growth rates of Nile perch, Lates niloticus L. of 20 cm to 40 cm total length were estimated in lakes Victoria and Kyoga in 1991 and 1992 and Nabugabo in 1992 and 1993 by tagging. Fish grew faster in Lake Kyoga (mean growth rate 28.7 ± 1.3 cm S.E. per year, N = 49) than in Lake Victoria (18.9 ± 1.4 cm per year, N = 20) and Lake Nabugabo (19.0 ± 0.7 cm per year, N = 43). There were significant differences in growth rates between the lakes (F2 109 = 24.037, P < 0.001). Growth rates in Lake Kyoga were significantly higher than those of lak'es Victoria and Nabugabo (p < 0.001) but those of lakes Victoria and Nabugabo were not significantly different from each other (p = > 0.05). The faster growth rates in Lake Kyoga were attributed to improvement in food supply due to increases in stocks of haplochromine prey. Growth rates in Lake Kyoga were significantly higher, but those of lakes Victoria and Nabugabo were within the ranges of those reported in several native habitats of Nile perch.
Resumo:
A continuous cell line (SISK) from kidney of sea bass, Lates calcarifer, has been established and characterized. The cell line was maintained in Leibovitz' L-15 supplemented with 15% fetal bovine serum. This cell line has been subcultured more than 100 times over a period of 2 years. The SISK cell line consists of predominantly of epithelial-like cells. These cells showed strong positive for epithelial markers such as cytokeratin 19 and pancytokeratin. The cells were able to grow at temperature between 25 and 32 °C with optimum temperature of 28 °C. The growth rate of sea bass kidney cells increased as the FBS proportion increased from 2% to 20% at 28 °C with optimum growth at the concentrations of 15% or 20% FBS. The distribution of chromosome number was 30 to 56 with a modal peak at 48 chromosomes. Polymerase chain reaction products were obtained from SISK cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. Five fish viruses were tested on this cell line to determine its susceptibility to these viruses and this was found to be susceptible to MABV NC1 and nodavirus, and the infection was confirmed by RT-PCR and CPE. This suggests that the SISK cell line has good potential for the isolation of various fish viruses. This cell line has been shown to be susceptible to bacterial extracellular products. The SISK cell line is the India's first marine fish cell line.
Resumo:
Mucosal and serum antibody responses were studied in sibling barramundi (Lates calcarifer) acclimated in either seawater or freshwater following vaccination by intraperitoneal injection or direct immersion in an inactivated Streptococcus iniae vaccine. As expected, route of vaccination had a marked effect on immune response, with direct immersion resulting in low serum antibody levels against S. iniae by ELISA detected 21 days post vaccination at 26 degrees C, whilst a significant response was detected in mucus. A strong specific antibody response was detected in both mucus and serum 21 days following intraperitoneal injection. Fish acclimated in seawater prior to vaccination showed a markedly higher specific mucosal antibody response than sibling fish acclimated in freshwater, regardless of the route of vaccination, whilst the serum antibody response was not affected by salinity. Both mucosal and serum antibodies from fish in seawater and freshwater were capable of binding antigen at salinities similar to full strength seawater in a modified ELISA assay. These results indicate that this euryhaline fish species is riot only able to mount significant specific antibody response in cutaneous mucus, but that these antibodies will function in the marine environment. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The present study was undertaken to try and find out why Lates niloticus and Oreochromis nilolicus have managed to co-exist in Lake Victoria (Kenya sector). The study is considered to be of tremendous scientific value not only because Lates has been accused of preying on the cichlid stocks in L.Victoria but also for considering suitable management approaches to maintain viable fishery resources on long-term basis. The results presented are preliminary and the final detailed results will be presented later when the survey will have been accomplished.
Resumo:
Catch effort data on which fisheries management regulations are sometimes based are not available for most lakes in Uganda. However, failure to regulate fishing gears and methods has been a major cause of collapse of fisheries in the country. Fisheries have been damaged by destructive and non-selective fishing gears and methods such as trawling and beach seining, by use of gill nets of mesh size which crop immature fish and by introduction of mechanised fishing. Selectivity of gears used to crop Lates niloticus L.(Nile perch), Oreochromis niloticus L. (Nile tilapia) and Rastrineobola argentea Pellegrin (Mukene) which are currently the most important commercial species in Uganda were examined in order to recommend the most suitable types, sizes and methods that should be used in exploiting these fisheries. Gill nets of less than 127 mm mainly cropped immature Nile tilapia and Nile perch. To protect these fisheries, the minimum mesh size of gill nets should be set at 127 mm. Seine nets of 5 mm caught high proportions in immature Mukene while those of 10 mm caught mainly mature Mukene. When operated inshore, both sizes caught immature Nile perch and Nile tilapia as by-catch. To protect the Mukene fishery and avoid catching immature bye-catch, a minimum mesh size of the Mukene net should be 10 mm operated as Lampara type net offshore, but since most fishermen have been using 5 mm seine nets for over five years the minimum size should not be allowed to drop below 5 mm pending further thorough investigations. Beach seining and trawling are destructive to fisheries and should be prohibited until data that may justify their use is available.
Resumo:
Lates calcarifer supports important fisheries throughout tropical Australia. Community-driven fish stocking has resulted in the creation of impoundment fisheries and supplemental stocking of selected wild riverine populations. Using predominantly tag-recapture methods, condition assessment and stomach flushing techniques, this study compared the growth of stocked and wild L. calcarifer in a tropical Australian river (Johnstone River) and stocked fish in a nearby impoundment (Lake Tinaroo). Growth of L. calcarifer in the Johnstone River appeared resource-limited, with juvenile fish in its lower freshwater reaches feeding mainly on small aytid shrimp and limited quantities of fish. Growth was probably greatest in estuarine and coastal areas than in the lower freshwater river. Fish in Lake Tinaroo, where prey availability was greater, grew faster than either wild or stocked fish in the lower freshwater areas of the Johnstone River. Growth of L. calcarifer was highly seasonal with marked declines in the cooler months. This was reflected in both stomach fullness and the percentage of fish with empty stomachs but the condition of L. calcarifer was similar across most sites. In areas where food resources appear stretched, adverse effects on resident L. calcarifer populations and their attendant prey species should be minimised through cessation of, or more conservative, stocking practices.
Resumo:
This report is based on the investigation of the factors affecting population characteristics and relative abundance of Nile perch in selected sites of Kagegi Gulf Lake Victoria Uganda in the month of November 2006. Nine (9) stations were sampled at depth strata of 0-10, 10-20, 20-30 and 30-40 m the mean catch rates were as follows; 8.75±5.5, 4.77±2.3, 6.33±0.3 and 1.34±1.1 tonnes per square kilometer respectively. The catch rates differed at various depth levels with p-value of 0.2940 at 5% level of significance. Limnological parameters were temperature 25.15±0.28, 23.68±0.20, 24.74±0.13 and 25.3±0.20°C; pH of 8.0±0.00, 7.7±0.11; 7.66±0.33 and 6.32±0.14, dissolved oxygen 7.37±0.24, 6.44±0.30, 6.32±0.14 and 6.22±0.14 mg/l; Total nitrogen 589.82±97.2, 514.34±68.8, 690.44±257.8 and 809.03±45.02 µgL-respectively with a p-value of 0.4392 at 5% level of significance. Prey type of Nile perch indicated 65.2% of haplochromine in 0-10 m depth and other strata >10 metre were dominated by Caridina nilotica. Generally investigations indicated that the catch rates of Nile perch at Kagegi gulf in various depth strata probably depended on both the physical and chemical parameters mentioned above.
Resumo:
This study was undertaken in Napoleon gulf, Lake Victoria Uganda from July – December 2009. It was conducted in four landing sites; Bukaya (0.41103N, 33.19133E), Bugungu (0.40216N, 33.2028E), Busana (0.39062N, 33.25228E) and Kikondo (0.3995N, 33.21848E) all from Buikwe district (Formerly part of Mukono district). The main aim was to determine the effect of both hook size and bait type on the catch rate (mean weight) and size composition of Nile perch (Lates niloticus) (LINNE) fishery in the Napoleon Gulf, Lake Victoria. The main hook sizes investigated during the experiment were 7, 8, 9, 10, 11 and 12 that were dominantly used in harvesting Nile perch in Napoleon Gulf, Lake Victoria. In this study length, weight and bait type data were collected on site from each boat at that particular fishing spot; since most fishermen in the Napoleon Gulf could sell their fish immediately the catch is caught there and then. The results indicated a total of 873 Nile perch fish samples collected during the study. Statistical tests, descriptive statistics, regression and correlation were all carried out using the Statistical Package for the Social Sciences (SPSS) in addition to Microsoft excel. The bait types in the Gulf ranged from 5-10 cm Total length (TL) haplochromine, 24.5-27 cm TL Mormyrus kannume and 9-24 cm TL Clarias species. The bait types had a significant effect on the catch rate and also on the size composition the fish harvested measured as Total length (ANCOVA F=8.231; P<0.05) despite the fact that bait type had no influence on mean weight of fish captured (ANCOVA F=2.898; P>0.05). Hook sizes used by the fishers had a significant effect on the both the size (TL) composition (ANCOVA F=3.847; P<0.05) and the mean weight (ANCOVA F=4.599; P<0.005) of the Nile perch captured. Investigations indicated hook sizes seven (7) and eight (8) were the ones that harvested the Nile perch above the slot size of 50 cm total length. In general hook sizes indicated to be the main drive in the harvesting of the Nile perch though bait type also contributed toward that. Generally there is need for management to put a law in place on the minimum hook size to be used on the harvesting of the Nile perch and also monitored by the Fisheries Management as a regulatory measure. In addition to that aquaculture should be encouraged to farm the fish for bait at a higher scale in the region in order to avoid depleting the wild stocks already in danger of extinction. Through this kind of venture, both biodiversity conservation and environmental sustainability will be observed in the Lake Victoria basin.
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production.