761 resultados para Lateralis Muscle-activity
Resumo:
Control of the neck muscles is coordinated with the sensory organs of vision, hearing and balance. For instance, activity of splenius capitis (SC) is modified with gaze shift. This interaction between eye movement and neck muscle activity is likely to influence the control of neck movement. The aim of this study was to investigate the effect of eye position on neck muscle activity during cervical rotation. In eleven subjects we recorded electromyographic activity (EMG) of muscles that rotate the neck to the right [right obliquus capitis inferior (OI), multifides (MF), and SC, and left sternocleidomastoid (SCM)] with intramuscular or surface electrodes. In sitting, subjects rotated the neck in each direction to specific points in range that were held statically with gaze either fixed to a guide (at three different positions) that moved with the head to maintain a constant intra-orbit eye position or to a panel in front of the subject. Although right SC and left SCM EMG increased with rotation to the right, contrary to anatomical texts, OI EMG increased with both directions and MF EMG did not change from the activity recorded at rest. During neck rotation SCM and MF EMG was less when the eyes were maintained with a constant intra-orbit position that was opposite to the direction of rotation compared to trials in which the eyes were maintained in the same direction as the head movement. The inter-relationship between eye position and neck muscle activity may affect the control of neck posture and movement.
Resumo:
Question Do different sitting postures require different levels of pelvic floor and abdominal muscle activity in healthy women? Design Observational study. Participants Eight parous women with no pelvic floor dysfunction. Outcome measures Bilateral activity of pelvic floor muscles (assessed vaginally) and two abdominal muscles, obliquus internus abdominis and obliquus externus abdominis, during three sitting postures. Results There was a significant increase in pelvic floor muscle activity from slump supported sitting (mean 7.2% maximal voluntary contraction, SD 4.8) to both upright unsupported sifting (mean 12.6% maximal voluntary contraction, SD 7.8) (p = 0.01) and very tall unsupported sitting (mean 24.3% maximal voluntary contraction, SD 14.2) (p = 0.004). Activity in both abdominal muscles also increased but did not reach statistical significance. Conclusion Both unsupported sitting postures require greater pelvic floor muscle activity than the supported sitting posture.
Resumo:
The purpose of this study was to investigate how the CNS adjusts motor patterns for variants of a complex axial movement-the situp. Adjustments were induced by changing the support surface contact and mass distribution of the body. Healthy adults performed straight-legged sit-ups, 3 s in duration, with support added to or removed from the lumbar trunk, or with mass added to the head or to the legs. Each of these interventions either increased or decreased the difficulty of the task. The study addressed the extent to which changes in sit-up difficulty are compensated by scaling of muscle activity, kinematics, and dynamics versus the extent to which they are compensated by changing discretely the motor pattern. The analysis of muscle activity, kinematics, and dynamics focused on the first 30-40% of the sit-up-the trunk flexion phase-since this is the most critical part of the movement. Our results demonstrate that, in some respects, sit-up kinematics and dynamics scaled with difficulty, but in other respects, they did not. Muscle activity also scaled, in many respects, but in more difficult sit-ups, abdominal flexor activity decreased instead of increased. Non-scaling changes in these parameters suggest that complex movements, such as the sit-up, may require discrete changes in motor pattern in order to deal with large loads, which challenge the available leverage. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Study Design. A comparative study of trunk and hip extensor muscle recruitment patterns in 2 subject groups. Objective. To examine for changes in recruitment of the hip and back extensor muscles during low level isometric trunk rotation efforts in chronic low back pain (CLBP) subjects by comparison with matched asymptomatic control subjects. Summary of Background Data. Anatomic and biomechanical models have provided evidence that muscles attaching to the thoracolumbar fascia (TLF) are important for providing stabilization to the lumbopelvic region during trunk rotation. This has guided rehabilitation programs. The muscles that link diagonally to the posterior layer of the TLF have not previously been examined individually and compared during low-level trunk rotation efforts in CLBP patients and matched controls. Methods. Thirty CLBP patients and 30 matched controls were assessed using surface electromyography (EMG) as they performed low-level isometric rotation efforts while standing upright. Muscles studied included latissimus dorsi, erector spinae, upper and lower gluteus maximus, and biceps femoris. Subjects performed the rotation exertion with various levels of external trunk support, related to different functional tasks. Results. EMG results demonstrated that subjects with CLBP had significantly higher levels of recruitment for the lower and upper gluteus maximus (P < 0.05), hamstrings (P < 0.05), and erector spinae muscles (P < 0.05) during rotation to the left compared with the control subjects. Conclusion. This study provided evidence of increased muscle recruitment in CLBP patients when performing a standardized trunk rotation task. These results may have implications for the design of therapeutic exercise programs for CLBP patients.
Resumo:
Many studies have accounted for whole body vibration effects in the fields of exercise physiology, sport and rehabilitation medicine. Generally, surface EMG is utilized to assess muscular activity during the treatment; however, large motion artifacts appear superimposed to the raw signal, making sEMG recording not suitable before any artifact filtering. Sharp notch filters, centered at vibration frequency and at its superior harmonics, have been used in previous studies, to remove the artifacts. [6, 10] However, to get rid of those artifacts some true EMG signal is lost. The purpose of this study was to reproduce the effect of motor-unit synchronization on a simulated surface EMG during vibratory stimulation. In addition, authors mean to evaluate the EMG power percentage in those bands in which are also typically located motion artifact components. Model characteristics were defined to take into account two main aspect: the muscle MUs discharge behavior and the triggering effects that appear during local vibratory stimulation. [7] Inter-pulse-interval, was characterized by a polimodal distribution related to the MU discharge frequency (IPI 55-80ms, σ=12ms) and to the correlation with the vibration period within the range of ±2 ms due to vibration stimulus. [1, 7] The signals were simulated using different stimulation frequencies from 30 to 70 Hz. The percentage of the total simulated EMG power within narrow bands centered at the stimulation frequency and its superior harmonics (± 1 Hz) resulted on average about 8% (± 2.85) of the total EMG power. However, the artifact in those bands may contain more than 40% of the total power of the total signal. [6] Our preliminary results suggest that the analysis of the muscular activity of muscle based on raw sEMG recordings and RMS evaluation, if not processed during vibratory stimulation may lead to a serious overestimation of muscular response.
Resumo:
This study aims to reproduce the effect of motor-unit synchronization on surface EMG recordings during vibratory stimulation to highlight vibration evoked muscle activity. The authors intended to evaluate, through numerical simulations, the changes in surface EMG spectrum in muscles undergoing whole body vibration stimulation. In some specific bands, in fact, vibration induced motion artifacts are also typically present. In addition, authors meant to compare the simulated EMGs with respect to real recordings in order to discriminate the effect of synchronization of motor units discharges with vibration frequencies from motion artifacts. Computations were performed using a model derived from previous studies and modified to consider the effect of vibratory stimulus, the motor unit synchronization and the endplates-electrodes relative position on the EMG signal. Results revealed that, in particular conditions, synchronization of MUs' discharge generates visible peaks at stimulation frequency and its harmonics. However, only a part of the total power of surface EMGs might be enclosed within artifacts related bands (±1. Hz centered at the stimulation frequency and its superior harmonics) even in case of strong synchronization of motor units discharges with the vibratory stimulus. © 2013 Elsevier Ireland Ltd.
Resumo:
Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.
Resumo:
Mouth breathing may cause changes in muscle activity, because an upper airway obstruction leads may cause a person to extend his/her head forward, demanding a higher inspiratory effort on the accessory muscles (sternocleidomastoids). This purpose of this study is to compare, using electromyography (EMG), the activity pattern the sternocleidomastoid and upper trapezius muscles in mouth breathing children and nasal breathing children. Forty-six children, ages 8-12 years, 33 male and 13 female were included. The selected children were divided into two groups: Group I consisted of 26 mouth breathing children, and Group II, 20 nasal breathing children. EMG recordings were made using surface electrodes bilaterally in the areas of the sternocleidomastoideus and upper trapezius muscles, while relaxed and during maximal voluntary contraction. The data were analyzed using the Kruskall-Wallis statistical test. The results indicated higher activity during relaxation and lower activity during maximal voluntary contraction in mouth breathers when compared to the nasal breathers. It is suggested that the activity pattern of the sternocleidomastoid and upper trapezius muscles differs between mouth breathing children and nasal breathing children. This may be attributed to changes in body posture which causes muscular imbalance. Because of the limitations of surface EMG, the results need to be confirmed by adding force measurements and repeating the experiments with matched subjects. Copyright © 2004 by CHROMA, Inc.
Resumo:
Objective: To analyze the effect of running intensity on stride length (SL), stride frequency (SF), stride time (ST) and the electromyographic signal of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), biceps femoris (BF) and gastrocnemius lateralis (GL) muscles. Methods: Nine well-trained runners performed an incremental protocol with an initial velocity of 10km.h-1, and increments of 1km.h-1 every 3minutes until exhaustion. The electromyographic activity, SL, SF, ST, inter-stride coefficient of variation, and association between kinematic and electromyographic parameters were calculated at 60%, 80% and 100% of maximum running velocity. Results: SL, SF and electromyographic activity of the RF, VM, VL and GL increased and the ST decreased with increased running speed. Electromyographic variability of VL and VM was higher than GL, and variability was lower in TA than all other muscles. The inter-stride variability of muscle activation was associated with kinematic parameters, and their variability, differently as running speed increased. Conclusion: The incremental protocol increased electromyographic activity differently among lower limb muscles; increased SF and SL, and decreased ST, without changing the variability of these variables. Muscle activation variability was correlated with kinematic parameters, but the relationships among these measures varied with running intensity. © 2013 .
Resumo:
[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.
Resumo:
The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R 2 = 0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential. © 2009 IPEM.