960 resultados para Lateral Geniculate Nucleus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertonic NaCl intake is produced by serotonin receptor antagonism in the lateral parabrachial nucleus (LPBN) of dehydrated rats or in rats pretreated with a mineralocorticoid, for example deoxycorticosterone (DOCA), that receive an intracerebroventricular injection (icv) of angiotensin II (ang II). The objective of the present work was to find out whether these two mechanisms are also involved with isotonic NaCl intake. Serotonin receptor blockade by methysergide in the LPBN (4 mu g/0.2 mu l bilaterally) had no effect on 0.15 M NaCl (methysergide: 19.3 +/- 5.2 ml/60 min; vehicle: 19.3 +/- 4.2 ml/60 min; n=7) or water (methysergide: 3.4 +/- 1.4 ml/ 60 min; vehicle 2.2 +/- 0.6 ml/60 min) intake induced by systemic diuretic furosemide combined with low dose of captopril (Furo/Cap). Methysergide treatment 4 days later in the same animals produced the expected enhancement in the 0.3 M NaCl intake induced by Furo/Cap (methysergide: 16.6 +/- 3.5 ml/60 min; vehicle: 6.6 +/- 1.5 ml/60 min). Similar result was obtained when another group was tested first with 0.3 M NaCl and later with 0.15 M NaCl. Isotonic NaCl intake induced by icv ang II was however enhanced by prior DOCA treatment. A de novo hypertonic NaCl intake was produced in another group by the same combined treatment. The results suggest that a facilitatory mechanism like the mineralocorticoid/ang II synergy may enhance NaCl solution intake at different levels of tonicity, while the action of an inhibitory mechanism, like the LPBN serotonergic system, is restricted to the ingestion at hypertonic levels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 mu g/200 eta 1) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT2a/HT2c receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI;1 or 5 mu g/200 eta 1) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 mu g) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 mu g) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of bilateral injections of serotonergic receptor agonist and antagonist into the lateral parabrachial nucleus (LPBN) on the ingestion of water and 0.3 M NaCl induced by intracerebroventricular angiotensin II (ANG II) or by combined subcutaneous injections of the diuretic furosemide (Furo) and the angiotensin-converting enzyme inhibitor captopril (Cap). Rats had stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle. Bilateral LPBN pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl each site) increased 0.3 M NaCl and water intakes induced by intracerebroventricular ANG II (50 ng/mu l) and 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with bilateral LPBN injections of a serotonergic 5-HT2A/2C receptor agonist DOI (5 mu g/200 nl) significantly reduced 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with methysergide or DOI into the LPBN produced no significant changes in the water intake induced by subcutaneous Furo + Cap. These results suggest that serotonergic mechanisms associated with the LPBN may have inhibitory roles in water and sodium ingestion in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 mug), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of bilateral injections of the local anesthetic, lidocaine, into the lateral parabrachial nucleus (LPBN) on the dipsogenic and presser responses induced by intracerebroventricular (i.c.v.) injection of angiotensin II (ANG II). Centrally injected ANG II (50 ng/l mu l) induced water intake (10.2 +/- 0.8 ml/h) and presser responses (22 +/- 1 mmHg). Prior bilateral injection of 10% lidocaine (200 nl) into the LPBN increased the water intake (14.2 +/- 1.4 ml/h), but did not change the presser response (17 +/- 1 mmHg) to i.c.v. ANG II. Lidocaine alone injected into the LPBN also induced a presser response (23 +/- 3 mmHg). These results showing that bilateral LPBN injection of lidocaine increase water intake induced by i.c.v. ANG II are consistent with electrolytic and neurotoxic lesion studies and suggest that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II. These results also provide evidence that it is feasible to reversibly anesthetize this brain area to facilitate fluid-related ingestive behavior.