905 resultados para Latent Inhibition Model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La relación entre la estructura urbana y la movilidad ha sido estudiada desde hace más de 70 años. El entorno urbano incluye múltiples dimensiones como por ejemplo: la estructura urbana, los usos de suelo, la distribución de instalaciones diversas (comercios, escuelas y zonas de restauración, parking, etc.). Al realizar una revisión de la literatura existente en este contexto, se encuentran distintos análisis, metodologías, escalas geográficas y dimensiones, tanto de la movilidad como de la estructura urbana. En este sentido, se trata de una relación muy estudiada pero muy compleja, sobre la que no existe hasta el momento un consenso sobre qué dimensión del entorno urbano influye sobre qué dimensión de la movilidad, y cuál es la manera apropiada de representar esta relación. Con el propósito de contestar estas preguntas investigación, la presente tesis tiene los siguientes objetivos generales: (1) Contribuir al mejor entendimiento de la compleja relación estructura urbana y movilidad. y (2) Entender el rol de los atributos latentes en la relación entorno urbano y movilidad. El objetivo específico de la tesis es analizar la influencia del entorno urbano sobre dos dimensiones de la movilidad: número de viajes y tipo de tour. Vista la complejidad de la relación entorno urbano y movilidad, se pretende contribuir al mejor entendimiento de la relación a través de la utilización de 3 escalas geográficas de las variables y del análisis de la influencia de efectos inobservados en la movilidad. Para el análisis se utiliza una base de datos conformada por tres tipos de datos: (1) Una encuesta de movilidad realizada durante los años 2006 y 2007. Se obtuvo un total de 943 encuestas, en 3 barrios de Madrid: Chamberí, Pozuelo y Algete. (2) Información municipal del Instituto Nacional de Estadística: dicha información se encuentra enlazada con los orígenes y destinos de los viajes recogidos en la encuesta. Y (3) Información georeferenciada en Arc-GIS de los hogares participantes en la encuesta: la base de datos contiene información respecto a la estructura de las calles, localización de escuelas, parking, centros médicos y lugares de restauración. Se analizó la correlación entre e intra-grupos y se modelizaron 4 casos de atributos bajo la estructura ordinal logit. Posteriormente se evalúa la auto-selección a través de la estimación conjunta de las elecciones de tipo de barrio y número de viajes. La elección del tipo de barrio consta de 3 alternativas: CBD, Urban y Suburban, según la zona de residencia recogida en las encuestas. Mientras que la elección del número de viajes consta de 4 categorías ordinales: 0 viajes, 1-2 viajes, 3-4 viajes y 5 o más viajes. A partir de la mejor especificación del modelo ordinal logit. Se desarrolló un modelo joint mixed-ordinal conjunto. Los resultados indican que las variables exógenas requieren un análisis exhaustivo de correlaciones con el fin de evitar resultados sesgados. ha determinado que es importante medir los atributos del BE donde se realiza el viaje, pero también la información municipal es muy explicativa de la movilidad individual. Por tanto, la percepción de las zonas de destino a nivel municipal es considerada importante. En el contexto de la Auto-selección (self-selection) es importante modelizar conjuntamente las decisiones. La Auto-selección existe, puesto que los parámetros estimados conjuntamente son significativos. Sin embargo, sólo ciertos atributos del entorno urbano son igualmente importantes sobre la elección de la zona de residencia y frecuencia de viajes. Para analizar la Propensión al Viaje, se desarrolló un modelo híbrido, formado por: una variable latente, un indicador y un modelo de elección discreta. La variable latente se denomina “Propensión al Viaje”, cuyo indicador en ecuación de medida es el número de viajes; la elección discreta es el tipo de tour. El modelo de elección consiste en 5 alternativas, según la jerarquía de actividades establecida en la tesis: HOME, no realiza viajes durante el día de estudio, HWH tour cuya actividad principal es el trabajo o estudios, y no se realizan paradas intermedias; HWHs tour si el individuo reaiza paradas intermedias; HOH tour cuya actividad principal es distinta a trabajo y estudios, y no se realizan paradas intermedias; HOHs donde se realizan paradas intermedias. Para llegar a la mejor especificación del modelo, se realizó un trabajo importante considerando diferentes estructuras de modelos y tres tipos de estimaciones. De tal manera, se obtuvieron parámetros consistentes y eficientes. Los resultados muestran que la modelización de los tours, representa una ventaja sobre la modelización de los viajes, puesto que supera las limitaciones de espacio y tiempo, enlazando los viajes realizados por la misma persona en el día de estudio. La propensión al viaje (PT) existe y es específica para cada tipo de tour. Los parámetros estimados en el modelo híbrido resultaron significativos y distintos para cada alternativa de tipo de tour. Por último, en la tesis se verifica que los modelos híbridos representan una mejora sobre los modelos tradicionales de elección discreta, dando como resultado parámetros consistentes y más robustos. En cuanto a políticas de transporte, se ha demostrado que los atributos del entorno urbano son más importantes que los LOS (Level of Service) en la generación de tours multi-etapas. la presente tesis representa el primer análisis empírico de la relación entre los tipos de tours y la propensión al viaje. El concepto Propensity to Travel ha sido desarrollado exclusivamente para la tesis. Igualmente, el desarrollo de un modelo conjunto RC-Number of trips basado en tres escalas de medida representa innovación en cuanto a la comparación de las escalas geográficas, que no había sido hecha en la modelización de la self-selection. The relationship between built environment (BE) and travel behaviour (TB) has been studied in a number of cases, using several methods - aggregate and disaggregate approaches - and different focuses – trip frequency, automobile use, and vehicle miles travelled and so on. Definitely, travel is generated by the need to undertake activities and obtain services, and there is a general consensus that urban components affect TB. However researches are still needed to better understand which components of the travel behaviour are affected most and by which of the urban components. In order to fill the gap in the research, the present dissertation faced two main objectives: (1) To contribute to the better understanding of the relationship between travel demand and urban environment. And (2) To develop an econometric model for estimating travel demand with urban environment attributes. With this purpose, the present thesis faced an exhaustive research and computation of land-use variables in order to find the best representation of BE for modelling trip frequency. In particular two empirical analyses are carried out: 1. Estimation of three dimensions of travel demand using dimensions of urban environment. We compare different travel dimensions and geographical scales, and we measure self-selection contribution following the joint models. 2. Develop a hybrid model, integrated latent variable and discrete choice model. The implementation of hybrid models is new in the analysis of land-use and travel behaviour. BE and TB explicitly interact and allow richness information about a specific individual decision process For all empirical analysis is used a data-base from a survey conducted in 2006 and 2007 in Madrid. Spatial attributes describing neighbourhood environment are derived from different data sources: National Institute of Statistics-INE (Administrative: municipality and district) and GIS (circular units). INE provides raw data for such spatial units as: municipality and district. The construction of census units is trivial as the census bureau provides tables that readily define districts and municipalities. The construction of circular units requires us to determine the radius and associate the spatial information to our households. The first empirical part analyzes trip frequency by applying an ordered logit model. In this part is studied the effect of socio-economic, transport and land use characteristics on two travel dimensions: trip frequency and type of tour. In particular the land use is defined in terms of type of neighbourhoods and types of dwellers. Three neighbourhood representations are explored, and described three for constructing neighbourhood attributes. In particular administrative units are examined to represent neighbourhood and circular – unit representation. Ordered logit models are applied, while ordinal logit models are well-known, an intensive work for constructing a spatial attributes was carried out. On the other hand, the second empirical analysis consists of the development of an innovative econometric model that considers a latent variable called “propensity to travel”, and choice model is the choice of type of tour. The first two specifications of ordinal models help to estimate this latent variable. The latent variable is unobserved but the manifestation is called “indicators”, then the probability of choosing an alternative of tour is conditional to the probability of latent variable and type of tour. Since latent variable is unknown we fit the integral over its distribution. Four “sets of best variables” are specified, following the specification obtained from the correlation analysis. The results evidence that the relative importance of SE variables versus BE variables depends on how BE variables are measured. We found that each of these three spatial scales has its intangible qualities and drawbacks. Spatial scales play an important role on predicting travel demand due to the variability in measures at trip origin/destinations within the same administrative unit (municipality, district and so on). Larger units will produce less variation in data; but it does not affect certain variables, such as public transport supply, that are more significant at municipality level. By contrast, land-use measures are more efficient at district level. Self-selection in this context, is weak. Thus, the influence of BE attributes is true. The results of the hybrid model show that unobserved factors affect the choice of tour complexity. The latent variable used in this model is propensity to travel that is explained by socioeconomic aspects and neighbourhood attributes. The results show that neighbourhood attributes have indeed a significant impact on the choice of the type of tours either directly and through the propensity to travel. The propensity to travel has a different impact depending on the structure of each tour and increases the probability of choosing more complex tours, such as tours with many intermediate stops. The integration of choice and latent variable model shows that omitting important perception and attitudes leads to inconsistent estimates. The results also indicate that goodness of fit improves by adding the latent variable in both sequential and simultaneous estimation. There are significant differences in the sensitivity to the latent variable across alternatives. In general, as expected, the hybrid models show a major improvement into the goodness of fit of the model, compared to a classical discrete choice model that does not incorporate latent effects. The integrated model leads to a more detailed analysis of the behavioural process. Summarizing, the effect that built environment characteristics on trip frequency studied is deeply analyzed. In particular we tried to better understand how land use characteristics can be defined and measured and which of these measures do have really an impact on trip frequency. We also tried to test the superiority of HCM on this field. We can concluded that HCM shows a major improvement into the goodness of fit of the model, compared to classical discrete choice model that does not incorporate latent effects. And consequently, the application of HCM shows the importance of LV on the decision of tour complexity. People are more elastic to built environment attributes than level of services. Thus, policy implications must take place to develop more mixed areas, work-places in combination with commercial retails.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, we have developed the hierarchical Generative Topographic Mapping (HGTM), an interactive method for visualization of large high-dimensional real-valued data sets. In this paper, we propose a more general visualization system by extending HGTM in three ways, which allows the user to visualize a wider range of data sets and better support the model development process. 1) We integrate HGTM with noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM). This enables us to visualize data of inherently discrete nature, e.g., collections of documents, in a hierarchical manner. 2) We give the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode, the user selects "regions of interest," whereas in the automatic mode, an unsupervised minimum message length (MML)-inspired construction of a mixture of LTMs is employed. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. 3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualization plots, since they can highlight the boundaries between data clusters. We illustrate our approach on a toy example and evaluate it on three more complex real data sets. © 2005 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We formally compare fundamental factor and latent factor approaches to oil price modelling. Fundamental modelling has a long history in seeking to understand oil price movements, while latent factor modelling has a more recent and limited history, but has gained popularity in other financial markets. The two approaches, though competing, have not formally been compared as to effectiveness. For a range of short- medium- and long-dated WTI oil futures we test a recently proposed five-factor fundamental model and a Principal Component Analysis latent factor model. Our findings demonstrate that there is no discernible difference between the two techniques in a dynamic setting. We conclude that this infers some advantages in adopting the latent factor approach due to the difficulty in determining a well specified fundamental model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper evaluates the production activities of Japanese airports by using a finite mixture model that allows controlling for unobserved heterogeneity. In doing so, a stochastic frontier latent class model, which allows the existence of different technologies, is adopted to estimate production frontiers. This procedure not only enables the identification of different groups of Japanese airports but also permits the analysis of their production efficiency. The main result is that there are two groups of Japanese airports, both following completely different "technologies" to obtain passengers and cargo, suggesting that business strategies need to be adapted to the characteristics of the airports. Some managerial implications are developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents and evaluates a model to automatically derive word association networks from text corpora. Two aspects were evaluated: To what degree can corpus-based word association networks (CANs) approximate human word association networks with respect to (1) their ability to quantitatively predict word associations and (2) their structural network characteristics. Word association networks are the basis of the human mental lexicon. However, extracting such networks from human subjects is laborious, time consuming and thus necessarily limited in relation to the breadth of human vocabulary. Automatic derivation of word associations from text corpora would address these limitations. In both evaluations corpus-based processing provided vector representations for words. These representations were then employed to derive CANs using two measures: (1) the well known cosine metric, which is a symmetric measure, and (2) a new asymmetric measure computed from orthogonal vector projections. For both evaluations, the full set of 4068 free association networks (FANs) from the University of South Florida word association norms were used as baseline human data. Two corpus based models were benchmarked for comparison: a latent topic model and latent semantic analysis (LSA). We observed that CANs constructed using the asymmetric measure were slightly less effective than the topic model in quantitatively predicting free associates, and slightly better than LSA. The structural networks analysis revealed that CANs do approximate the FANs to an encouraging degree.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scale of environmental problems in China is clearly evident. This paper analyses foreign direct investment (FDI) in China with a finite mixture model, also known as latent class model to understand the relationship between FDI and several pollutions. This is used to regresses FDI as function covariates including pollutants. The results reveal that FDI is affected by pollutants. There are cases reducing pollution deters foreign investment in China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the gap in economic theory underlying the multidimensional concept of food security and observed data by deriving a composite food security index using the latent class model. The link between poverty and food security is then examined using the new food security index and the robustness of the link is compared with two unidimensional measures often used in the literature. Using Vietnam as a case study, it was found that a weak link exists for the rural but not for the urban composite food security index. The unidimensional measures on the other hand show a strong link in both the rural and urban regions. The results on the link are also different and mixed when two poverty types given by persistent and transient poverty are considered. These findings have important policy implications for a targeted approach to addressing food security.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microarrays are high throughput biological assays that allow the screening of thousands of genes for their expression. The main idea behind microarrays is to compute for each gene a unique signal that is directly proportional to the quantity of mRNA that was hybridized on the chip. A large number of steps and errors associated with each step make the generated expression signal noisy. As a result, microarray data need to be carefully pre-processed before their analysis can be assumed to lead to reliable and biologically relevant conclusions. This thesis focuses on developing methods for improving gene signal and further utilizing this improved signal for higher level analysis. To achieve this, first, approaches for designing microarray experiments using various optimality criteria, considering both biological and technical replicates, are described. A carefully designed experiment leads to signal with low noise, as the effect of unwanted variations is minimized and the precision of the estimates of the parameters of interest are maximized. Second, a system for improving the gene signal by using three scans at varying scanner sensitivities is developed. A novel Bayesian latent intensity model is then applied on these three sets of expression values, corresponding to the three scans, to estimate the suitably calibrated true signal of genes. Third, a novel image segmentation approach that segregates the fluorescent signal from the undesired noise is developed using an additional dye, SYBR green RNA II. This technique helped in identifying signal only with respect to the hybridized DNA, and signal corresponding to dust, scratch, spilling of dye, and other noises, are avoided. Fourth, an integrated statistical model is developed, where signal correction, systematic array effects, dye effects, and differential expression, are modelled jointly as opposed to a sequential application of several methods of analysis. The methods described in here have been tested only for cDNA microarrays, but can also, with some modifications, be applied to other high-throughput technologies. Keywords: High-throughput technology, microarray, cDNA, multiple scans, Bayesian hierarchical models, image analysis, experimental design, MCMC, WinBUGS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unlike previous studies’ finding on western and developed economies, income is a significant determinant of multidimensional deprivation in Vietnam. This first study on a developing country also incorporates food security in a latent class framework to compute a new multidimensional deprivation index. It was found that chronic poverty and not transient poverty has a detrimental effect on multidimensional deprivation and thus current poverty alleviation programs should potentially be tailored according to these poverty types to effectively combat multidimensional deprivation. The finding that 20% of non-poor are most deprived with85% of this group living in urban Vietnam also points to the need for a new form of targeted policy.