998 resultados para Laser-pulse filamentation
Resumo:
Laser radiation at 1.06 µm from a pulsed Nd:YAG laser was focused onto a multielement YBa2Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out.
Resumo:
Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method.
Resumo:
Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.
Resumo:
The laser produced plasma from the multi-component target YBa2CU3O7 was analyzed using Michelson interferometry and time resolved emission spectroscopy. The interaction of 10 ns pulses of 1.06 mum radiation from a Q-switched Nd:YAG laser at laser power densities ranging from 0.55 GW cm-2 to 1.5 GW cm-2 has been studied. Time resolved spectral measurements of the plasma evolution show distinct features at different points in its temporal history. For a time duration of less than 55 ns after the laser pulse (for a typical laser power density of 0.8 GW cm-2, the emission spectrum is dominated by black-body radiation. During cooling after 55 ns the spectral emission consists mainly of neutral and ionic species. Line averaged electron densities were deduced from interferometric line intensity measurements at various laser power densities. Plasma electron densities are of the order of 1017 cm-3 and the plasma temperature at the core region is about 1 eV. The measurement of plasma emission line intensities of various ions inside the plasma gave evidence of multiphoton ionization of the elements constituting the target at low laser power densities. At higher laser power densities the ionization mechanism is collision dominated. For elements such as nitrogen present outside the target, ionization is due to collisions only.
Resumo:
Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1-06/~m radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.
Resumo:
A laser produced plasma from the multielement solid target YBa2Cu3O7 is generated using 1.06 μm, 9 ns pulses from a Q-switched Nd:YAG laser in air at atmospheric pressure. A time resolved analysis of the profile of the 4554.03 Å resonance line emission from Ba II at various laser power densities has been carried out. It has been found that the line has a profile which is strongly self-reversed. It is also observed that at laser power densities equal to or exceeding 1.6×1011 W cm−2, a third peak begins to develop at the centre of the self-reversed profile and this has been interpreted as due to the anisotropic resonance scattering (fluorescence). The number densities of singly ionized barium ions evaluated from the width of the resonance line as a function of time delay with respect to the beginning of the laser pulse give typical values of the order of 1019 cm−3. The higher ion concentrations existing at smaller time delays are seen to decrease rapidly. The Ba II ions in the ground state resonantly absorb the radiation and this absorption is maximum around 120 ns after the laser pulse.
Resumo:
Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.
Resumo:
The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics.
Resumo:
A free-running, temperature stabilized diode laser has been injection-locked to an external cavity diode laser for use in cold Rydberg atom experiments. Cold rubidium atoms in a magneto-optical trap (MOT) are excited to Rydberg states using a 10 ns laser pulse. The Rydberg atoms spontaneously ionize due to dipole forces, and the collisional ionization dynamics are observed as a function of atom density and principal quantum number of the Rydberg state, n. The injection-locked diode laser will be used as a repumper in conjunction with a dark spontaneous-force optical trap (SPOT) to increase the Rydberg state density. We report on the design of the injection-locked laser system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: the purpose of this study was to verify if the application of the Nd:YAG laser following pretreatment of dentin with adhesive systems that were not light cured in class V cavities and were prepared with Er:YAG laser would promote better sealing of the gingival margins when compared to cavities prepared the conventional way. Background Data: Previous studies had shown that the pretreatment of dentin with laser irradiation after the application of an adhesive system is efficient in achieving higher shear bond and tensile bond strength. Materials and Methods: Er:YAG laser (Kavo-Key, Germany) with 350 mJ, 4 Hz, and 116.7 J/cm(2) was used for cavity preparation. The conventional preparation was made with diamond bur mounted in high-speed turbine. Dentin treatment was accomplished using an Nd:YAG laser (Pulse Master 1000, ADT. USA) at 60 mJ, 10 Hz, and 74.65/cm(2) following application of the adhesive system. The cavities were stored with Single Bond/Z100 and Prime & Bond NT/TPH. Eighty bovine incisors were used, and class V preparations were done at buccal and lingual surfaces divided into eight groups: (1) Er:YAG preparation + Prime & Bond NT + TPH; (2) Er:YAG preparation + Single Bond + Z100; (3) Er:YAG preparation + Single Bond + Nd:YAG + Z100; (4) Er:YAG preparation + Prime & Bond NT + Nd:YAG + TPH; (5) conventional preparation + Prime & Bond NT + TPH; (6) conventional preparation + Single Bond + Z100; (7) conventional preparation + Single Bond + Nd:YAG + Z100; (8) conventional preparation + Prime & Bond NT + Nd:YAG + TPH. All specimens were thermocycled for 300 full cycles between 5 degreesC +/- 2 degreesC and 55 degreesC +/- 2 degreesC (dwell time of 30 sec), and stored in 50% silver nitrate solution for 24 h soaked in photodeveloping solution and exposed to fluorescent light for 6 h. After this procedure, the specimens were sectioned longitudinally in 3 portions and the extension of microleakage at the gingival wall was determined following a criteria ranging from 0 to 4 using scanning electron microscopy (SEM). The medium portion sectioned of each specimen was polished and prepared for nanoleakage avaliation by SEM. Results: Kruskall-Wallis and Miller statistical tests determined that group 3 presented less microleakage and nanoleakage. Conclusion: Application of the Nd:YAG laser following pretreatment of dentin with adhesive Single Bond non-photocured Single Bond adhesive in cavities prepared with Er:YAG promote better sealing of the gingival margins.
Resumo:
In this work we developed a setup to measure the speed of sound in gases using a laser ultrasonics system. The mentioned setup is an all optical system composed by a Q-switched Nd:YAG laser to generate the sound waves, and a fiber optical microphone to detect them. The Nd:YAG provided a laser pulse of approximately 420 mJ energy and 9 ns of pulse width, at the wavelength of 1064 nm. The pulsed laser beam, focused by a positive lens, was used to generate an electrical breakdown (in the gas) which, in turn, generates an sound wave that traveled through a determined distance and reached the fiber optical microphone. The resulting signal was acquired in an oscilloscope and the time difference between the optical pulse and the arrival of the sound waves was used to calculate the speed of sound, since the distance was known. The system was initially tested to measure the speed of sound in air, at room pressure and temperature and it presented results in agreement with the theory, showing to be suitable to measure the speed of sound in gases. © 2012 American Institute of Physics.