791 resultados para Large-scale sensor networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies robustness against large-scale failures in communications networks. If failures are isolated, they usually go unnoticed by users thanks to recovery mechanisms. However, such mechanisms are not effective against large-scale multiple failures. Large-scale failures may cause huge economic loss. A key requirement towards devising mechanisms to lessen their impact is the ability to evaluate network robustness. This thesis focuses on multilayer networks featuring separated control and data planes. The majority of the existing measures of robustness are unable to capture the true service degradation in such a setting, because they rely on purely topological features. One of the major contributions of this thesis is a new measure of functional robustness. The failure dynamics is modeled from the perspective of epidemic spreading, for which a new epidemic model is proposed. Another contribution is a taxonomy of multiple, large-scale failures, adapted to the needs and usage of the field of networking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose WEAVE, a geographical 2D/3D routing protocol that maintains information on a small number of waypoints and checkpoints for forwarding packets to any destination. Nodes obtain the routing information from partial traces gathered in incoming packets and use a system of checkpoints along with the segments of routes to weave end-to-end paths close to the shortest ones. WEAVE does not generate any control traffic, it is suitable for routing in both 2D and 3D networks, and does not require any strong assumption on the underlying network graph such as the Unit Disk or a Planar Graph. WEAVE compares favorably with existing protocols in both testbed experiments and simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing experimental facilities for the Internet of Things (IoT) world is of paramount importance to materialise the Future Internet (FI) vision. The level of maturity achieved at the networking level in Sensor and Actuator networks (SAN) justifies the increasing demand on the research community to shift IoT testbed facilities from the network to the service and information management areas. In this paper we present an Experimental Platform fulfilling these needs by: integrating heterogeneous SAN infrastructures in a homogeneous way; providing mechanisms to handle information, and facilitating the development of experimental services. It has already been used to deploy applications in three different field trials: smart metering, smart places and environmental monitoring and it will be one of the components over which the SmartSantander project, that targets a large-scale IoT experimental facility, will rely on

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El interés cada vez mayor por las redes de sensores inalámbricos pueden ser entendido simplemente pensando en lo que esencialmente son: un gran número de pequeños nodos sensores autoalimentados que recogen información o detectan eventos especiales y se comunican de manera inalámbrica, con el objetivo final de entregar sus datos procesados a una estación base. Los nodos sensores están densamente desplegados dentro del área de interés, se pueden desplegar al azar y tienen capacidad de cooperación. Por lo general, estos dispositivos son pequeños y de bajo costo, de modo que pueden ser producidos y desplegados en gran numero aunque sus recursos en términos de energía, memoria, velocidad de cálculo y ancho de banda están enormemente limitados. Detección, tratamiento y comunicación son tres elementos clave cuya combinación en un pequeño dispositivo permite lograr un gran número de aplicaciones. Las redes de sensores proporcionan oportunidades sin fin, pero al mismo tiempo plantean retos formidables, tales como lograr el máximo rendimiento de una energía que es escasa y por lo general un recurso no renovable. Sin embargo, los recientes avances en la integración a gran escala, integrado de hardware de computación, comunicaciones, y en general, la convergencia de la informática y las comunicaciones, están haciendo de esta tecnología emergente una realidad. Del mismo modo, los avances en la nanotecnología están empezando a hacer que todo gire entorno a las redes de pequeños sensores y actuadores distribuidos. Hay diferentes tipos de sensores tales como sensores de presión, acelerómetros, cámaras, sensores térmicos o un simple micrófono. Supervisan las condiciones presentes en diferentes lugares tales como la temperatura, humedad, el movimiento, la luminosidad, presión, composición del suelo, los niveles de ruido, la presencia o ausencia de ciertos tipos de objetos, los niveles de tensión mecánica sobre objetos adheridos y las características momentáneas tales como la velocidad , la dirección y el tamaño de un objeto, etc. Se comprobara el estado de las Redes Inalámbricas de Sensores y se revisaran los protocolos más famosos. Así mismo, se examinara la identificación por radiofrecuencia (RFID) ya que se está convirtiendo en algo actual y su presencia importante. La RFID tiene un papel crucial que desempeñar en el futuro en el mundo de los negocios y los individuos por igual. El impacto mundial que ha tenido la identificación sin cables está ejerciendo fuertes presiones en la tecnología RFID, los servicios de investigación y desarrollo, desarrollo de normas, el cumplimiento de la seguridad y la privacidad y muchos más. Su potencial económico se ha demostrado en algunos países mientras que otros están simplemente en etapas de planificación o en etapas piloto, pero aun tiene que afianzarse o desarrollarse a través de la modernización de los modelos de negocio y aplicaciones para poder tener un mayor impacto en la sociedad. Las posibles aplicaciones de redes de sensores son de interés para la mayoría de campos. La monitorización ambiental, la guerra, la educación infantil, la vigilancia, la micro-cirugía y la agricultura son solo unos pocos ejemplos de los muchísimos campos en los que tienen cabida las redes mencionadas anteriormente. Estados Unidos de América es probablemente el país que más ha investigado en esta área por lo que veremos muchas soluciones propuestas provenientes de ese país. Universidades como Berkeley, UCLA (Universidad de California, Los Ángeles) Harvard y empresas como Intel lideran dichas investigaciones. Pero no solo EE.UU. usa e investiga las redes de sensores inalámbricos. La Universidad de Southampton, por ejemplo, está desarrollando una tecnología para monitorear el comportamiento de los glaciares mediante redes de sensores que contribuyen a la investigación fundamental en glaciología y de las redes de sensores inalámbricos. Así mismo, Coalesenses GmbH (Alemania) y Zurich ETH están trabajando en diversas aplicaciones para redes de sensores inalámbricos en numerosas áreas. Una solución española será la elegida para ser examinada más a fondo por ser innovadora, adaptable y polivalente. Este estudio del sensor se ha centrado principalmente en aplicaciones de tráfico, pero no se puede olvidar la lista de más de 50 aplicaciones diferentes que ha sido publicada por la firma creadora de este sensor específico. En la actualidad hay muchas tecnologías de vigilancia de vehículos, incluidos los sensores de bucle, cámaras de video, sensores de imagen, sensores infrarrojos, radares de microondas, GPS, etc. El rendimiento es aceptable, pero no suficiente, debido a su limitada cobertura y caros costos de implementación y mantenimiento, especialmente este ultimo. Tienen defectos tales como: línea de visión, baja exactitud, dependen mucho del ambiente y del clima, no se puede realizar trabajos de mantenimiento sin interrumpir las mediciones, la noche puede condicionar muchos de ellos, tienen altos costos de instalación y mantenimiento, etc. Por consiguiente, en las aplicaciones reales de circulación, los datos recibidos son insuficientes o malos en términos de tiempo real debido al escaso número de detectores y su costo. Con el aumento de vehículos en las redes viales urbanas las tecnologías de detección de vehículos se enfrentan a nuevas exigencias. Las redes de sensores inalámbricos son actualmente una de las tecnologías más avanzadas y una revolución en la detección de información remota y en las aplicaciones de recogida. Las perspectivas de aplicación en el sistema inteligente de transporte son muy amplias. Con este fin se ha desarrollado un programa de localización de objetivos y recuento utilizando una red de sensores binarios. Esto permite que el sensor necesite mucha menos energía durante la transmisión de información y que los dispositivos sean más independientes con el fin de tener un mejor control de tráfico. La aplicación se centra en la eficacia de la colaboración de los sensores en el seguimiento más que en los protocolos de comunicación utilizados por los nodos sensores. Las operaciones de salida y retorno en las vacaciones son un buen ejemplo de por qué es necesario llevar la cuenta de los coches en las carreteras. Para ello se ha desarrollado una simulación en Matlab con el objetivo localizar objetivos y contarlos con una red de sensores binarios. Dicho programa se podría implementar en el sensor que Libelium, la empresa creadora del sensor que se examinara concienzudamente, ha desarrollado. Esto permitiría que el aparato necesitase mucha menos energía durante la transmisión de información y los dispositivos sean más independientes. Los prometedores resultados obtenidos indican que los sensores de proximidad binarios pueden formar la base de una arquitectura robusta para la vigilancia de áreas amplias y para el seguimiento de objetivos. Cuando el movimiento de dichos objetivos es suficientemente suave, no tiene cambios bruscos de trayectoria, el algoritmo ClusterTrack proporciona un rendimiento excelente en términos de identificación y seguimiento de trayectorias los objetos designados como blancos. Este algoritmo podría, por supuesto, ser utilizado para numerosas aplicaciones y se podría seguir esta línea de trabajo para futuras investigaciones. No es sorprendente que las redes de sensores de binarios de proximidad hayan atraído mucha atención últimamente ya que, a pesar de la información mínima de un sensor de proximidad binario proporciona, las redes de este tipo pueden realizar un seguimiento de todo tipo de objetivos con la precisión suficiente. Abstract The increasing interest in wireless sensor networks can be promptly understood simply by thinking about what they essentially are: a large number of small sensing self-powered nodes which gather information or detect special events and communicate in a wireless fashion, with the end goal of handing their processed data to a base station. The sensor nodes are densely deployed inside the phenomenon, they deploy random and have cooperative capabilities. Usually these devices are small and inexpensive, so that they can be produced and deployed in large numbers, and so their resources in terms of energy, memory, computational speed and bandwidth are severely constrained. Sensing, processing and communication are three key elements whose combination in one tiny device gives rise to a vast number of applications. Sensor networks provide endless opportunities, but at the same time pose formidable challenges, such as the fact that energy is a scarce and usually non-renewable resource. However, recent advances in low power Very Large Scale Integration, embedded computing, communication hardware, and in general, the convergence of computing and communications, are making this emerging technology a reality. Likewise, advances in nanotechnology and Micro Electro-Mechanical Systems are pushing toward networks of tiny distributed sensors and actuators. There are different sensors such as pressure, accelerometer, camera, thermal, and microphone. They monitor conditions at different locations, such as temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of objects, mechanical stress levels on attached objects, the current characteristics such as speed, direction and size of an object, etc. The state of Wireless Sensor Networks will be checked and the most famous protocols reviewed. As Radio Frequency Identification (RFID) is becoming extremely present and important nowadays, it will be examined as well. RFID has a crucial role to play in business and for individuals alike going forward. The impact of ‘wireless’ identification is exerting strong pressures in RFID technology and services research and development, standards development, security compliance and privacy, and many more. The economic value is proven in some countries while others are just on the verge of planning or in pilot stages, but the wider spread of usage has yet to take hold or unfold through the modernisation of business models and applications. Possible applications of sensor networks are of interest to the most diverse fields. Environmental monitoring, warfare, child education, surveillance, micro-surgery, and agriculture are only a few examples. Some real hardware applications in the United States of America will be checked as it is probably the country that has investigated most in this area. Universities like Berkeley, UCLA (University of California, Los Angeles) Harvard and enterprises such as Intel are leading those investigations. But not just USA has been using and investigating wireless sensor networks. University of Southampton e.g. is to develop technology to monitor glacier behaviour using sensor networks contributing to fundamental research in glaciology and wireless sensor networks. Coalesenses GmbH (Germany) and ETH Zurich are working in applying wireless sensor networks in many different areas too. A Spanish solution will be the one examined more thoroughly for being innovative, adaptable and multipurpose. This study of the sensor has been focused mainly to traffic applications but it cannot be forgotten the more than 50 different application compilation that has been published by this specific sensor’s firm. Currently there are many vehicle surveillance technologies including loop sensors, video cameras, image sensors, infrared sensors, microwave radar, GPS, etc. The performance is acceptable but not sufficient because of their limited coverage and expensive costs of implementation and maintenance, specially the last one. They have defects such as: line-ofsight, low exactness, depending on environment and weather, cannot perform no-stop work whether daytime or night, high costs for installation and maintenance, etc. Consequently, in actual traffic applications the received data is insufficient or bad in terms of real-time owed to detector quantity and cost. With the increase of vehicle in urban road networks, the vehicle detection technologies are confronted with new requirements. Wireless sensor network is the state of the art technology and a revolution in remote information sensing and collection applications. It has broad prospect of application in intelligent transportation system. An application for target tracking and counting using a network of binary sensors has been developed. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices in order to have a better traffic control. The application is focused on the efficacy of collaborative tracking rather than on the communication protocols used by the sensor nodes. Holiday crowds are a good case in which it is necessary to keep count of the cars on the roads. To this end a Matlab simulation has been produced for target tracking and counting using a network of binary sensors that e.g. could be implemented in Libelium’s solution. Libelium is the enterprise that has developed the sensor that will be deeply examined. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices. The promising results obtained indicate that binary proximity sensors can form the basis for a robust architecture for wide area surveillance and tracking. When the target paths are smooth enough ClusterTrack particle filter algorithm gives excellent performance in terms of identifying and tracking different target trajectories. This algorithm could, of course, be used for different applications and that could be done in future researches. It is not surprising that binary proximity sensor networks have attracted a lot of attention lately. Despite the minimal information a binary proximity sensor provides, networks of these sensing modalities can track all kinds of different targets classes accurate enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown their potentials in various applications, which bring a lot of benefits to users from both research and industrial areas. For many setups, it is envisioned thatWSNs will consist of tens to hundreds of nodes that operate on small batteries. However due to the diversity of the deployed environments and resource constraints on radio communication, sensing ability and energy supply, it is a very challenging issue to plan optimized WSN topology and predict its performance before real deployment. During the network planning phase, the connectivity, coverage, cost, network longevity and service quality should all be considered. Therefore it requires designers coping with comprehensive and interdisciplinary knowledge, including networking, radio engineering, embedded system and so on, in order to efficiently construct a reliable WSN for any specific types of environment. Nowadays there is still a lack of the analysis and experiences to guide WSN designers to efficiently construct WSN topology successfully without many trials. Therefore, simulation is a feasible approach to the quantitative analysis of the performance of wireless sensor networks. However the existing planning algorithms and tools, to some extent, have serious limitations to practically design reliable WSN topology: Only a few of them tackle the 3D deployment issue, and an overwhelming number of works are proposed to place devices in 2D scheme. Without considering the full dimension, the impacts of environment to the performance of WSN are not completely studied, thus the values of evaluated metrics such as connectivity and sensing coverage are not sufficiently accurate to make proper decision. Even fewer planning methods model the sensing coverage and radio propagation by considering the realistic scenario where obstacles exist. Radio signals propagate with multi-path phenomenon in the real world, in which direct paths, reflected paths and diffracted paths contribute to the received signal strength. Besides, obstacles between the path of sensor and objects might block the sensing signals, thus create coverage hole in the application. None of the existing planning algorithms model the network longevity and packet delivery capability properly and practically. They often employ unilateral and unrealistic formulations. The optimization targets are often one-sided in the current works. Without comprehensive evaluation on the important metrics, the performance of planned WSNs can not be reliable and entirely optimized. Modeling of environment is usually time consuming and the cost is very high, while none of the current works figure out any method to model the 3D deployment environment efficiently and accurately. Therefore many researchers are trapped by this issue, and their algorithms can only be evaluated in the same scenario, without the possibility to test the robustness and feasibility for implementations in different environments. In this thesis, we propose a novel planning methodology and an intelligent WSN planning tool to assist WSN designers efficiently planning reliable WSNs. First of all, a new method is proposed to efficiently and automatically model the 3D indoor and outdoor environments. To the best of our knowledge, this is the first time that the advantages of image understanding algorithm are applied to automatically reconstruct 3D outdoor and indoor scenarios for signal propagation and network planning purpose. The experimental results indicate that the proposed methodology is able to accurately recognize different objects from the satellite images of the outdoor target regions and from the scanned floor plan of indoor area. Its mechanism offers users a flexibility to reconstruct different types of environment without any human interaction. Thereby it significantly reduces human efforts, cost and time spent on reconstructing a 3D geographic database and allows WSN designers concentrating on the planning issues. Secondly, an efficient ray-tracing engine is developed to accurately and practically model the radio propagation and sensing signal on the constructed 3D map. The engine contributes on efficiency and accuracy to the estimated results. By using image processing concepts, including the kd-tree space division algorithm and modified polar sweep algorithm, the rays are traced efficiently without detecting all the primitives in the scene. The radio propagation model iv is proposed, which emphasizes not only the materials of obstacles but also their locations along the signal path. The sensing signal of sensor nodes, which is sensitive to the obstacles, is benefit from the ray-tracing algorithm via obstacle detection. The performance of this modelling method is robust and accurate compared with conventional methods, and experimental results imply that this methodology is suitable for both outdoor urban scenes and indoor environments. Moreover, it can be applied to either GSM communication or ZigBee protocol by varying frequency parameter of the radio propagation model. Thirdly, WSN planning method is proposed to tackle the above mentioned challenges and efficiently deploy reliable WSNs. More metrics (connectivity, coverage, cost, lifetime, packet latency and packet drop rate) are modeled more practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions accordingly, and the results are more comprehensively optimized compared with other state-of-the-art algorithms. iMOST is developed by integrating the introduced algorithms, to assist WSN designers efficiently planning reliable WSNs for different configurations. The abbreviated name iMOST stands for an Intelligent Multi-objective Optimization Sensor network planning Tool. iMOST contributes on: (1) Convenient operation with a user-friendly vision system; (2) Efficient and automatic 3D database reconstruction and fast 3D objects design for both indoor and outdoor environments; (3) It provides multiple multi-objective optimized 3D deployment solutions and allows users to configure the network properties, hence it can adapt to various WSN applications; (4) Deployment solutions in the 3D space and the corresponding evaluated performance are visually presented to users; and (5) The Node Placement Module of iMOST is available online as well as the source code of the other two rebuilt heuristics. Therefore WSN designers will be benefit from v this tool on efficiently constructing environment database, practically and efficiently planning reliable WSNs for both outdoor and indoor applications. With the open source codes, they are also able to compare their developed algorithms with ours to contribute to this academic field. Finally, solid real results are obtained for both indoor and outdoor WSN planning. Deployments have been realized for both indoor and outdoor environments based on the provided planning solutions. The measured results coincide well with the estimated results. The proposed planning algorithm is adaptable according to the WSN designer’s desirability and configuration, and it offers flexibility to plan small and large scale, indoor and outdoor 3D deployments. The thesis is organized in 7 chapters. In Chapter 1, WSN applications and motivations of this work are introduced, the state-of-the-art planning algorithms and tools are reviewed, challenges are stated out and the proposed methodology is briefly introduced. In Chapter 2, the proposed 3D environment reconstruction methodology is introduced and its performance is evaluated for both outdoor and indoor environment. The developed ray-tracing engine and proposed radio propagation modelling method are described in details in Chapter 3, their performances are evaluated in terms of computation efficiency and accuracy. Chapter 4 presents the modelling of important metrics of WSNs and the proposed multi-objective optimization planning algorithm, the performance is compared with the other state-of-the-art planning algorithms. The intelligent WSN planning tool iMOST is described in Chapter 5. RealWSN deployments are prosecuted based on the planned solutions for both indoor and outdoor scenarios, important data are measured and results are analysed in Chapter 6. Chapter 7 concludes the thesis and discusses about future works. vi Resumen en Castellano Las redes de sensores inalámbricas (en inglés Wireless Sensor Networks, WSNs) han demostrado su potencial en diversas aplicaciones que aportan una gran cantidad de beneficios para el campo de la investigación y de la industria. Para muchas configuraciones se prevé que las WSNs consistirán en decenas o cientos de nodos que funcionarán con baterías pequeñas. Sin embargo, debido a la diversidad de los ambientes para desplegar las redes y a las limitaciones de recursos en materia de comunicación de radio, capacidad de detección y suministro de energía, la planificación de la topología de la red y la predicción de su rendimiento es un tema muy difícil de tratar antes de la implementación real. Durante la fase de planificación del despliegue de la red se deben considerar aspectos como la conectividad, la cobertura, el coste, la longevidad de la red y la calidad del servicio. Por lo tanto, requiere de diseñadores con un amplio e interdisciplinario nivel de conocimiento que incluye la creación de redes, la ingeniería de radio y los sistemas embebidos entre otros, con el fin de construir de manera eficiente una WSN confiable para cualquier tipo de entorno. Hoy en día todavía hay una falta de análisis y experiencias que orienten a los diseñadores de WSN para construir las topologías WSN de manera eficiente sin realizar muchas pruebas. Por lo tanto, la simulación es un enfoque viable para el análisis cuantitativo del rendimiento de las redes de sensores inalámbricos. Sin embargo, los algoritmos y herramientas de planificación existentes tienen, en cierta medida, serias limitaciones para diseñar en la práctica una topología fiable de WSN: Sólo unos pocos abordan la cuestión del despliegue 3D mientras que existe una gran cantidad de trabajos que colocan los dispositivos en 2D. Si no se analiza la dimensión completa (3D), los efectos del entorno en el desempeño de WSN no se estudian por completo, por lo que los valores de los parámetros evaluados, como la conectividad y la cobertura de detección, no son lo suficientemente precisos para tomar la decisión correcta. Aún en menor medida los métodos de planificación modelan la cobertura de los sensores y la propagación de la señal de radio teniendo en cuenta un escenario realista donde existan obstáculos. Las señales de radio en el mundo real siguen una propagación multicamino, en la que los caminos directos, los caminos reflejados y los caminos difractados contribuyen a la intensidad de la señal recibida. Además, los obstáculos entre el recorrido del sensor y los objetos pueden bloquear las señales de detección y por lo tanto crear áreas sin cobertura en la aplicación. Ninguno de los algoritmos de planificación existentes modelan el tiempo de vida de la red y la capacidad de entrega de paquetes correctamente y prácticamente. A menudo se emplean formulaciones unilaterales y poco realistas. Los objetivos de optimización son a menudo tratados unilateralmente en los trabajos actuales. Sin una evaluación exhaustiva de los parámetros importantes, el rendimiento previsto de las redes inalámbricas de sensores no puede ser fiable y totalmente optimizado. Por lo general, el modelado del entorno conlleva mucho tiempo y tiene un coste muy alto, pero ninguno de los trabajos actuales propone algún método para modelar el entorno de despliegue 3D con eficiencia y precisión. Por lo tanto, muchos investigadores están limitados por este problema y sus algoritmos sólo se pueden evaluar en el mismo escenario, sin la posibilidad de probar la solidez y viabilidad para las implementaciones en diferentes entornos. En esta tesis, se propone una nueva metodología de planificación así como una herramienta inteligente de planificación de redes de sensores inalámbricas para ayudar a los diseñadores a planificar WSNs fiables de una manera eficiente. En primer lugar, se propone un nuevo método para modelar demanera eficiente y automática los ambientes interiores y exteriores en 3D. Según nuestros conocimientos hasta la fecha, esta es la primera vez que las ventajas del algoritmo de _image understanding_se aplican para reconstruir automáticamente los escenarios exteriores e interiores en 3D para analizar la propagación de la señal y viii la planificación de la red. Los resultados experimentales indican que la metodología propuesta es capaz de reconocer con precisión los diferentes objetos presentes en las imágenes satelitales de las regiones objetivo en el exterior y de la planta escaneada en el interior. Su mecanismo ofrece a los usuarios la flexibilidad para reconstruir los diferentes tipos de entornos sin ninguna interacción humana. De este modo se reduce considerablemente el esfuerzo humano, el coste y el tiempo invertido en la reconstrucción de una base de datos geográfica con información 3D, permitiendo así que los diseñadores se concentren en los temas de planificación. En segundo lugar, se ha desarrollado un motor de trazado de rayos (en inglés ray tracing) eficiente para modelar con precisión la propagación de la señal de radio y la señal de los sensores en el mapa 3D construido. El motor contribuye a la eficiencia y la precisión de los resultados estimados. Mediante el uso de los conceptos de procesamiento de imágenes, incluyendo el algoritmo del árbol kd para la división del espacio y el algoritmo _polar sweep_modificado, los rayos se trazan de manera eficiente sin la detección de todas las primitivas en la escena. El modelo de propagación de radio que se propone no sólo considera los materiales de los obstáculos, sino también su ubicación a lo largo de la ruta de señal. La señal de los sensores de los nodos, que es sensible a los obstáculos, se ve beneficiada por la detección de objetos llevada a cabo por el algoritmo de trazado de rayos. El rendimiento de este método de modelado es robusto y preciso en comparación con los métodos convencionales, y los resultados experimentales indican que esta metodología es adecuada tanto para escenas urbanas al aire libre como para ambientes interiores. Por otra parte, se puede aplicar a cualquier comunicación GSM o protocolo ZigBee mediante la variación de la frecuencia del modelo de propagación de radio. En tercer lugar, se propone un método de planificación de WSNs para hacer frente a los desafíos mencionados anteriormente y desplegar redes de sensores fiables de manera eficiente. Se modelan más parámetros (conectividad, cobertura, coste, tiempo de vida, la latencia de paquetes y tasa de caída de paquetes) en comparación con otros trabajos. Especialmente el método de trazado de rayos 3D se utiliza para modelar el enlace de radio y señal de los sensores que son sensibles a la obstrucción de obstáculos; el enrutamiento de la red se construye utilizando el protocolo AODV; la longevidad de la red, retardo de paquetes ix y tasa de abandono de paquetes se obtienen a través de la simulación de eventos prácticos en el simulador WSNet, y según nuestros conocimientos hasta la fecha, es la primera vez que simulador de red está implicado en un algoritmo de planificación. Por otra parte, se ha desarrollado un algoritmo de optimización multi-objetivo para satisfacer las características de las redes inalámbricas de sensores. La capacidad de proporcionar múltiples soluciones optimizadas de forma simultánea permite a los usuarios tomar sus propias decisiones en consecuencia, obteniendo mejores resultados en comparación con otros algoritmos del estado del arte. iMOST se desarrolla mediante la integración de los algoritmos presentados, para ayudar de forma eficiente a los diseñadores en la planificación de WSNs fiables para diferentes configuraciones. El nombre abreviado iMOST (Intelligent Multi-objective Optimization Sensor network planning Tool) representa una herramienta inteligente de planificación de redes de sensores con optimización multi-objetivo. iMOST contribuye en: (1) Operación conveniente con una interfaz de fácil uso, (2) Reconstrucción eficiente y automática de una base de datos con información 3D y diseño rápido de objetos 3D para ambientes interiores y exteriores, (3) Proporciona varias soluciones de despliegue optimizadas para los multi-objetivo en 3D y permite a los usuarios configurar las propiedades de red, por lo que puede adaptarse a diversas aplicaciones de WSN, (4) las soluciones de implementación en el espacio 3D y el correspondiente rendimiento evaluado se presentan visualmente a los usuarios, y (5) El _Node Placement Module_de iMOST está disponible en línea, así como el código fuente de las otras dos heurísticas de planificación. Por lo tanto los diseñadores WSN se beneficiarán de esta herramienta para la construcción eficiente de la base de datos con información del entorno, la planificación práctica y eficiente de WSNs fiables tanto para aplicaciones interiores y exteriores. Con los códigos fuente abiertos, son capaces de comparar sus algoritmos desarrollados con los nuestros para contribuir a este campo académico. Por último, se obtienen resultados reales sólidos tanto para la planificación de WSN en interiores y exteriores. Los despliegues se han realizado tanto para ambientes de interior y como para ambientes de exterior utilizando las soluciones de planificación propuestas. Los resultados medidos coinciden en gran medida con los resultados estimados. El algoritmo de planificación x propuesto se adapta convenientemente al deiseño de redes de sensores inalámbricas, y ofrece flexibilidad para planificar los despliegues 3D a pequeña y gran escala tanto en interiores como en exteriores. La tesis se estructura en 7 capítulos. En el Capítulo 1, se presentan las aplicaciones de WSN y motivaciones de este trabajo, se revisan los algoritmos y herramientas de planificación del estado del arte, se presentan los retos y se describe brevemente la metodología propuesta. En el Capítulo 2, se presenta la metodología de reconstrucción de entornos 3D propuesta y su rendimiento es evaluado tanto para espacios exteriores como para espacios interiores. El motor de trazado de rayos desarrollado y el método de modelado de propagación de radio propuesto se describen en detalle en el Capítulo 3, evaluándose en términos de eficiencia computacional y precisión. En el Capítulo 4 se presenta el modelado de los parámetros importantes de las WSNs y el algoritmo de planificación de optimización multi-objetivo propuesto, el rendimiento se compara con los otros algoritmos de planificación descritos en el estado del arte. La herramienta inteligente de planificación de redes de sensores inalámbricas, iMOST, se describe en el Capítulo 5. En el Capítulo 6 se llevan a cabo despliegues reales de acuerdo a las soluciones previstas para los escenarios interiores y exteriores, se miden los datos importantes y se analizan los resultados. En el Capítulo 7 se concluye la tesis y se discute acerca de los trabajos futuros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently underwater sensor networks (UWSN) attracted large research interests. Medium access control (MAC) is one of the major challenges faced by UWSN due to the large propagation delay and narrow channel bandwidth of acoustic communications used for UWSN. Widely used slotted aloha (S-Aloha) protocol suffers large performance loss in UWSNs, which can only achieve performance close to pure aloha (P-Aloha). In this paper we theoretically model the performances of S-Aloha and P-Aloha protocols and analyze the adverse impact of propagation delay. According to the observation on the performances of S-Aloha protocol we propose two enhanced S-Aloha protocols in order to minimize the adverse impact of propagation delay on S-Aloha protocol. The first enhancement is a synchronized arrival S-Aloha (SA-Aloha) protocol, in which frames are transmitted at carefully calculated time to align the frame arrival time with the start of time slots. Propagation delay is taken into consideration in the calculation of transmit time. As estimation error on propagation delay may exist and can affect network performance, an improved SA-Aloha (denoted by ISA-Aloha) is proposed, which adjusts the slot size according to the range of delay estimation errors. Simulation results show that both SA-Aloha and ISA-Aloha perform remarkably better than S-Aloha and P-Aloha for UWSN, and ISA-Aloha is more robust even when the propagation delay estimation error is large. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location estimation is important for wireless sensor network (WSN) applications. In this paper we propose a Cramer-Rao Bound (CRB) based analytical approach for two centralized multi-hop localization algorithms to get insights into the error performance and its sensitivity to the distance measurement error, anchor node density and placement. The location estimation performance is compared with four distributed multi-hop localization algorithms by simulation to evaluate the efficiency of the proposed analytical approach. The numerical results demonstrate the complex tradeoff between the centralized and distributed localization algorithms on accuracy, complexity and communication overhead. Based on this analysis, an efficient and scalable performance evaluation tool can be designed for localization algorithms in large scale WSNs, where simulation-based evaluation approaches are impractical. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.