954 resultados para Laplace transform
Resumo:
The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.
Resumo:
This work aims to study several diffusive regimes, especially Brownian motion. We deal with problems involving anomalous diffusion using the method of fractional derivatives and fractional integrals. We introduce concepts of fractional calculus and apply it to the generalized Langevin equation. Through the fractional Laplace transform we calculate the values of diffusion coefficients for two super diffusive cases, verifying the validity of the method
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Voltages and currents in the transmission line are described by differential equations that are difficult to solve due soil and skin effect that has to be considered for accurate results, but it increases their complexity. Therefore there are some models to study the voltages and currents along in transmission line. The distributed parameters model that transforms the equations in time domain to the frequency domain and once the solutions are obtained, they are converted to time domain using the Inverse Laplace Transform using numerical methods. Another model is named lumped parameters model and it considers the transmission line represented by a pi-circuit cascade and the currents and voltages are described by state equations. In the simulations using the lumped parameters model, it can be observed the presence of spurious oscillations that are independent of the quantity of pi-circuits used and do not represent the real value of the transient. In this work will be projected a passive low-pass filter directly inserted in the lumped parameters model to reduce the spurious oscillations in the simulations, making this model more accurate and reliable for studying the electromagnetic transients in power systems.
Resumo:
Die zuverlässige Berechnung von quantitativen Parametern der Lungenventilation ist für ein Verständnis des Verhaltens der Lunge und insbesondere für die Diagnostik von Lungenerkrankungen von großer Bedeutung. Nur durch quantitative Parameter sind verlässliche und reproduzierbare diagnostische Aussagen über den Gesundheitszustand der Lunge möglich. Im Rahmen dieser Arbeit wurden neue quantitative Verfahren zur Erfassung der Lungenventilation basierend auf der dynamischen Computer- (CT) und Magnetresonanztomographie (MRT) entwickelt. Im ersten Teil dieser Arbeit wurde die Frage untersucht, ob das Aufblähen der Lunge in gesunden Schweinelungen und Lungen mit Akutem Lungenversagen (ARDS) durch einzelne, diskrete Zeitkonstanten beschrieben werden kann, oder ob kontinuierliche Verteilungen von Zeitkonstanten die Realität besser beschreiben. Hierzu wurden Serien dynamischer CT-Aufnahmen während definierter Beatmungsmanöver (Drucksprünge) aufgenommen und anschließend aus den Messdaten mittels inverser Laplace-Transformation die zugehörigen Verteilungen der Zeitkonstanten berechnet. Um die Qualität der Ergebnisse zu analysieren, wurde der Algorithmus im Rahmen von Simulationsrechnungen systematisch untersucht und anschließend in-vivo an gesunden und ARDS-Schweinelungen eingesetzt. Während in den gesunden Lungen mono- und biexponentielle Verteilungen bestimmt wurden, waren in den ARDS-Lungen Verteilungen um zwei dominante Zeitkonstanten notwendig, um die gemessenen Daten auf der Basis des verwendeten Modells verlässlich zu beschreiben. Es wurden sowohl diskrete als auch kontinuierliche Verteilungen gefunden. Die CT liefert Informationen über das solide Lungengewebe, während die MRT von hyperpolarisiertem 3He in der Lage ist, direkt das eingeatmete Gas abzubilden. Im zweiten Teil der Arbeit wurde zeitlich hochaufgelöst das Einströmen eines 3He-Bolus in die Lunge erfasst. Über eine Entfaltungsanalyse wurde anschließend das Einströmverhalten unter Idealbedingungen (unendlich kurzer 3He-Bolus), also die Gewebeantwortfunktion, berechnet und so eine Messtechnik-unabhängige Erfassung des Einströmens von 3He in die Lunge ermöglicht. Zentrale Fragestellung war hier, wie schnell das Gas in die Lunge einströmt. Im Rahmen von Simulationsrechnungen wurde das Verhalten eines Entfaltungsalgorithmus (basierend auf B-Spline Repräsentationen) systematisch analysiert. Zusätzlich wurde ein iteratives Entfaltungsverfahren eingesetzt. Aus zeitlich hochaufgelösten Messungen (7ms) an einer gesunden und einer ARDS-Schweinelunge konnte erstmals nachgewiesen werden, dass das Einströmen in-vivo in weniger als 0,1s geschieht. Die Ergebnisse zeigen Zeitkonstanten im Bereich von 4ms–50ms, wobei zwischen der gesunden Lungen und der ARDS-Lunge deutliche Unterschiede beobachtet wurden. Zusammenfassend ermöglichen daher die in dieser Arbeit vorgestellten Algorithmen eine objektivere Bestimmung quantitativer Parameter der Lungenventilation. Dies ist für die eindeutige Beschreibung ventilatorischer Vorgänge in der Lunge und somit für die Lungendiagnostik unerlässlich. Damit stehen quantitative Methoden für die Lungenfunktionsdiagnostik zur Verfügung, deren diagnostische Relevanz im Rahmen wissenschaftlicher und klinischer Studien untersucht werden kann.
Resumo:
Die vorliegende Arbeit ist motiviert durch biologische Fragestellungen bezüglich des Verhaltens von Membranpotentialen in Neuronen. Ein vielfach betrachtetes Modell für spikende Neuronen ist das Folgende. Zwischen den Spikes verhält sich das Membranpotential wie ein Diffusionsprozess X der durch die SDGL dX_t= beta(X_t) dt+ sigma(X_t) dB_t gegeben ist, wobei (B_t) eine Standard-Brown'sche Bewegung bezeichnet. Spikes erklärt man wie folgt. Sobald das Potential X eine gewisse Exzitationsschwelle S überschreitet entsteht ein Spike. Danach wird das Potential wieder auf einen bestimmten Wert x_0 zurückgesetzt. In Anwendungen ist es manchmal möglich, einen Diffusionsprozess X zwischen den Spikes zu beobachten und die Koeffizienten der SDGL beta() und sigma() zu schätzen. Dennoch ist es nötig, die Schwellen x_0 und S zu bestimmen um das Modell festzulegen. Eine Möglichkeit, dieses Problem anzugehen, ist x_0 und S als Parameter eines statistischen Modells aufzufassen und diese zu schätzen. In der vorliegenden Arbeit werden vier verschiedene Fälle diskutiert, in denen wir jeweils annehmen, dass das Membranpotential X zwischen den Spikes eine Brown'sche Bewegung mit Drift, eine geometrische Brown'sche Bewegung, ein Ornstein-Uhlenbeck Prozess oder ein Cox-Ingersoll-Ross Prozess ist. Darüber hinaus beobachten wir die Zeiten zwischen aufeinander folgenden Spikes, die wir als iid Treffzeiten der Schwelle S von X gestartet in x_0 auffassen. Die ersten beiden Fälle ähneln sich sehr und man kann jeweils den Maximum-Likelihood-Schätzer explizit angeben. Darüber hinaus wird, unter Verwendung der LAN-Theorie, die Optimalität dieser Schätzer gezeigt. In den Fällen OU- und CIR-Prozess wählen wir eine Minimum-Distanz-Methode, die auf dem Vergleich von empirischer und wahrer Laplace-Transformation bezüglich einer Hilbertraumnorm beruht. Wir werden beweisen, dass alle Schätzer stark konsistent und asymptotisch normalverteilt sind. Im letzten Kapitel werden wir die Effizienz der Minimum-Distanz-Schätzer anhand simulierter Daten überprüfen. Ferner, werden Anwendungen auf reale Datensätze und deren Resultate ausführlich diskutiert.
Resumo:
A characterization is provided for the von Mises–Fisher random variable, in terms of first exit point from the unit hypersphere of the drifted Wiener process. Laplace transform formulae for the first exit time from the unit hypersphere of the drifted Wiener process are provided. Post representations in terms of Bell polynomials are provided for the densities of the first exit times from the circle and from the sphere.
Resumo:
The filling-withdrawal process of a long liquid bridge is analyzed using a one-dimensional linearized model for the dynamics of the liquid column. To carry out this study, a well-known standard operational method (Laplace transform) has been used, and time variation of both liquid velocity field and interface shape are obtained.
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.
Resumo:
Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99
Resumo:
MSC 2010: 35R11, 42A38, 26A33, 33E12
Resumo:
The aim of the paper is to investigate the well-known bullwhip effect of supply chains. Control theoretic analysis of bullwhip effect is extensively analyzed in the literature with the Laplace transform. This paper tries to examine the effect for an extended Holt–Modigliani–Muth–Simon model. A two-stage supply chain (supplier–manufacturer) is studied with quadratic costs functional. It is assumed that both firms minimize the relevant costs. The order of the manufacturer is delayed with a known constant. Two cases are examined: supplier and manufacturer minimize the relevant costs decentralized, and a centralized decision rule. The question is answered, how to decrease the bullwhip effect.