976 resultados para Langmuir Equation
Resumo:
The adsorption of p-nitrophenol in one untreated activated carbon (F100) and three treated activated carbons (H-2, H2SO4 and Urea treated F100) was carried out at undissociated and dissociated conditions. To characterize the carbon, N-2 and CO2 adsorption were used. X-ray Photoelectron Spectroscopy (XPS) was used to analyze the surface of the activated carbon. The experimental isotherms are fitted via the Langmuir homogenous model and Langmuir binary model. Variation of the model parameters with the solution pH is studied. Both Q(max) and the adsorption affinity coefficient (K-1) were dependent on the PZC of the carbons and solution pH. The Effect of pH must be considered due to its combined effects on the carbon surface and on the solute molecules. Adsorption of p-nitrophenol at higher pH was found to be dependent on the concentration of the anionic form of the solute.
Resumo:
The physicochemical characteristics of three Brazilian pears were investigated using elemental analysis, scanning electron microscopy (SEM), X-ray diffractometry (XRD) and studies of Cr(III) biosorption based on adsorption isotherms. Adsorption of Cr(III) by in natura peat from Santo Amaro das Brotas (Sergipe State) was much greater than by peats from either Ribeirao Preto (São Paulo State) or Itabaiana (Sergipe State), with adsorption capacities (q) of 4.90 +/- 0.01, 1.70 +/- 0.01 and 1.40 +/- 0.01 mgg (1), respectively. Pre-treatments with HCl and NaOH + HCl reduced adsorption by the Santo Amaro clas Brotas peat, showing that adsorption efficiency was associated with the amount of organic matter present. Conversely, increase in the mineral content following pre-treatment increased adsorption of Cr(III) by the Ribeirao Preto and Itabaiana peats. Highest adsorption (retention >95.0%) was achieved at equilibrium pH 4.0 using the Santo Amaro das Brotas peat. Experimental data for the adsorption of Cr(III) from aqueous solution onto this peat were fitted to the Langmuir equation, from which an equilibrium adsorption capacity, q(max), of 5.60 mgg(-1) was obtained, which was close to the experimentally determined value. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (qmax) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.
Resumo:
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (qmax) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.
Resumo:
The Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the structure of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence. Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elongated streaky structures in streamwise velocity fluctuations (u) are produced in shear turbulence, because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, that indicate that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by the air–sea interface that is shown to yield profiles of the velocity variances in good agreement with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a near two-component state, with suppressed and . Near the surface, over a depth of order the integral length scale of the turbulence, the vertical velocity (w) is brought to zero by blocking of the air–sea interface. Since the turbulence is nearly two-component, this vertical energy is transferred into the spanwise fluctuations, considerably enhancing at the interface. After a time of order half the eddy decorrelation time the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the deformation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production and dissipation in the turbulent kinetic energy budget, found by previous authors.
Resumo:
The Poisson-Boltzmann equation (PBE), with specific ion-surface interactions and a cell model, was used to calculate the electrostatic properties of aqueous solutions containing vesicles of ionic amphiphiles. Vesicles are assumed to be water- and ion-permeable hollow spheres and specific ion adsorption at the surfaces was calculated using a Volmer isotherm. We solved the PBE numerically for a range of amphiphile and salt concentrations (up to 0.1 M) and calculated co-ion and counterion distributions in the inside and outside of vesicles as well as the fields and electrical potentials. The calculations yield results that are consistent with measured values for vesicles of synthetic amphiphiles.
Resumo:
Experiments on the adsorption of Procion Scarlet MX-G by normal hyphae and by paramorphic colonies of Neurospora crassa were performed at pH 2.5, 4.5 and 6.5 at 30 degrees C. The measured adsorption isotherms were evaluated by the Freundlich and Langmuir equations. The removal of dye was most effective at pH 2.5 and more dye was adsorbed per unit mass of cells in the paramorphic cultures than in the normal hyphae. The statistical tests showed Langmuir's equation to give a better fit to the adsorption data.
Resumo:
Las sondas eléctricas se emplean habitualmente en la diagnosis de plasmas. La presente tesis aborda la operación de las sondas colectoras y emisoras de Langmuir en plasmas fríos de baja densidad. El estudio se ha centrado en la determinación del potencial de plasma, Vsp, mediante el potencial flotante de una sonda emisora. Esta técnica consiste en la medida del potencial de la sonda correspondiente a la condición de corriente neta igual a cero, el cual se denomina potencial flotante, VF. Este potencial se desplaza hacia el potencial del plasma según aumenta la emisión termoiónica de la sonda, hasta que se satura cerca de Vsp. Los experimentos llevados a cabo en la pluma de plasma de un motor iónico y en un plasma de descarga de glow muestran que la corriente de electrones termoiónicos es mayor que la corriente de electrones recogidos para una sonda polarizada por debajo del potencial del plasma, resultado inconsistente con la teoría tradicionalmente aceptada. Para investigar estos resultados se ha introducido el parámetro R, definido como el cociente entre la corriente de electrones emitidos y recogidos por la sonda. Este parámetro, que está relacionado con la diferencia de potencial VF - Vsp, también es útil para la descripción de los modos de operación de la sonda emisora (débil, fuerte y más allá del fuerte). Los resultados experimentales evidencian que, al contrario de lo que indica la teoría, R es mayor que la unidad. Esta discrepancia se puede solucionar introduciendo una población efectiva de electrones. Con dicha población, el nuevo modelo para la corriente total de la sonda reproduce los datos experimentales. El origen de este grupo electrónico es todavía una cuestión abierta, pero podría estar originada por una nueva estructura de potencial cerca de la sonda cuando ésta trabaja en el régimen de emisión fuerte. Para explicar dicha estructura de potencial, se propone un modelo unidimensional compuesto por un mínimo de potencial cerca de la superficie de la sonda. El análisis numérico indica que este pozo de potencial aparece para muy altas temperaturas de la sonda, reduciendo la cantidad de electrones emitidos que alcanzan el plasma y evitando así cualquier posible perturbación de éste. Los aspectos experimentales involucrados en el método del potencial flotante también se han estudiado, incluyendo cuestiones como las diferentes técnicas de obtención del VF, el cociente señal-ruido, el acoplamiento de la señal de los equipos utilizados para la obtención de las curvas I-V o la evidencia experimental de los diferentes modos de operación de la sonda. Estas evidencias empíricas se encuentran en todos los aspectos de operación de la sonda: la recolección de electrones, el potencial flotante, la precisión en las curvas I-V y la emisión electrónica. Ésta última también se estudia en la tesis, debido a que un fenómeno de super emisión tiene lugar en el régimen de emisión fuerte. En este modo de operación, las medidas experimentales indican que las corrientes termoiónicas de electrones son mayores que aquéllas predichas por la ecuación de Richardson-Dushman clásica. Por último, la diagnosis de plasmas usando sondas eléctrica bajo presencia de granos de polvo (plasmas granulares) en plasmas fríos de baja densidad también se ha estudiado, mediante la aplicación numérica de la técnica del potencial flotante de la sonda emisora en un plasma no convencional. Los resultados apuntan a que el potencial flotante de una sonda emisora se vería afectado por altas densidades de polvo o grandes partículas. ABSTRACT Electric probes are widely employed for plasma diagnostics. This dissertation concerns the operation of collecting and emissive Langmuir probes in low density cold plasmas. The study is focused on the determination of the plasma potential, Vsp, by means of the floating potential of emissive probes. This technique consists of the measurement of the probe potential, corresponding to the zero net probe current, which is the so-called floating potential, VF . This potential displaces towards the plasma potential as the thermionic electron emission increases, until it saturates near Vsp. Experiments carried out in the plasma plume of an ion thruster and in a glow discharge plasma show the thermionic electron current of the emissive Langmuir probe is higher than the collected electron current, for a probe with a bias potential below Vsp, which is inconsistent with the traditional accepted theory. To investigate these results, a parameter R is introduced as the ratio between the emitted and the collected electron current. This parameter, which is related to the difference VF - Vsp, is also useful for the description of the operation modes of the emissive Langmuir probe (weak, strong and beyond strong). The experimental results give an inconsistency of R > 1, which is solved by a modification of the theory for emissive probes, with the introduction of an effective electron population. With this new electron group, the new model for the total probe current agrees with the experimental data. The origin of this electron group remains an open question, but it might be originated by a new potential structure near the emissive probe when it operates in the strong emission regime. A simple one-dimension model composed by a minimum of potential near the probe surface is discussed for strongly emitting emissive probes. The results indicate that this complex potential structure appears for very high probe temperatures and the potential well might reduce the emitted electrons population reaching the plasma bulk. The experimental issues involved in the floating potential method are also studied, as the different obtaining techniques of VF, the signal-to-noise ratio, the signal coupling of the I-V curve measurement system or the experimental evidence of the probe operation modes. These empirical proofs concern all the probe operation aspects: the electron collection, the floating potential, the I-V curve accuracy as well as the electron emission. This last issue is also investigated in this dissertation, because a super emission takes place in the strong emission regime. In this operation mode, the experimental results indicate that the thermionic electron currents might be higher than those predicted by the classical Richardson-Dushman equation. Finally, plasma diagnosis using electric probes in the presence of dust grains (dusty plasmas) in low density cold plasmas is also addressed. The application of the floating potential technique of the emissive probe in a non-conventional complex plasma is numerically investigated, whose results point out the floating potential of the emissive probe might be shifted for high dust density or large dust particles.
Resumo:
We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 ºC) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 ºC (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 ºC, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 ºC. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.