977 resultados para Land-Atmosphere Coupling Model
Resumo:
The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.
Resumo:
The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.
Resumo:
This paper details a strategy for modifying the source code of a complex model so that the model may be used in a data assimilation context, {and gives the standards for implementing a data assimilation code to use such a model}. The strategy relies on keeping the model separate from any data assimilation code, and coupling the two through the use of Message Passing Interface (MPI) {functionality}. This strategy limits the changes necessary to the model and as such is rapid to program, at the expense of ultimate performance. The implementation technique is applied in different models with state dimension up to $2.7 \times 10^8$. The overheads added by using this implementation strategy in a coupled ocean-atmosphere climate model are shown to be an order of magnitude smaller than the addition of correlated stochastic random errors necessary for some nonlinear data assimilation techniques.
Resumo:
In this paper we use a coupled ocean-atmosphere model to investigate the impact of the interruption of Agulhas leakage of Indian ocean water on the tropical Atlantic, a region where strong coupled ocean-atmosphere interactions occur. The effect of a shut down of leakage of Indian ocean water is isolated from the effect of a collapse of the MOC. In our experiments, the ocean model is forced with boundary conditions in the southeastern corner of the domain that correspond to no interocean exchange of Indian ocean water into the Atlantic. The southern boundary condition is taken from the Levitus data and ensures an MOC in the Atlantic. Within this configuration, instead of warm and salty Indian ocean water temperature (cold) and salinity (fresh) anomalies of southern ocean origin propagate into the South Atlantic and eventually reach the equatorial region, mainly in the thermocline. This set up mimics the closure of the ""warm water path"" in favor of the ""cold water path"". As part of the atmospheric response, there is a northward shift of the intertropical convergence zone (ITCZ). The changes in trade winds lead to reduced Ekman pumping in the equatorial region. This leads to a freshening and warming of the surface waters along the equator. Especially in the Cold Tongue region, the cold and fresh subsurface anomalies do not reach the surface due to the reduced upwelling. The anomaly signals are transported by the equatorial undercurrent and spread away from the equator within the thermocline. Part of the anomaly eventually reaches the Tropical North Atlantic, where it affects the Guinea Dome. Surprisingly, the main effect at the surface is small on the equator and relatively large at the Guinea Dome. In the atmosphere, the northward shift of the ITCZ is associated with a band of negative precipitation anomalies and higher salinities over the Tropical South Atlantic. An important implication of these results is that the modified water characteristics due to a shut down of the Agulhas leakage remain largely unaffected when crossing the equatorial Atlantic and therefore can affect the deepwater formation in the North Atlantic. This supports the hypothesis that the Agulhas leakage is an important source region for climate change and decadal variability of the Atlantic.
Resumo:
The exchange of chemical constituents between ocean and atmosphere provides potentially important feedback mechanisms in the climate system. The aim of this study is to develop and evaluate a chemically coupled global atmosphere-ocean model. For this, an atmosphere-ocean general circulation model with atmospheric chemistry has been expanded to include oceanic biogeochemistry and the process of air-sea gas exchange. The calculation of seawater concentrations in the oceanic biogeochemistry submodel has been expanded from DMS, CO₂
Resumo:
Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.
Resumo:
The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.
Resumo:
We present the first ecosystem-scale methane flux data from a northern Siberian tundra ecosystem covering the entire snow-free period from spring thaw until initial freeze-back. Eddy covariance measurements of methane emission were carried out from the beginning of June until the end of September in the southern central part of the Lena River Delta (72°22' N, 126°30' E). The study site is located in the zone of continuous permafrost and is characterized by Arctic continental climate with very low precipitation and a mean annual temperature of -14.7°C. We found relatively low fluxes of on average 18.7 mg/m**2/d, which we consider to be because of (1) extremely cold permafrost, (2) substrate limitation of the methanogenic archaea, and (3) a relatively high surface coverage of noninundated, moderately moist areas. Near-surface turbulence as measured by the eddy covariance system in 4 m above the ground surface was identified as the most important control on ecosystem-scale methane emission and explained about 60% of the variance in emissions, while soil temperature explained only 8%. In addition, atmospheric pressure was found to significantly improve an exponential model based on turbulence and soil temperature. Ebullition from waterlogged areas triggered by decreasing atmospheric pressure and near-surface turbulence is thought to be an important pathway that warrants more attention in future studies. The close coupling of methane fluxes and atmospheric parameters demonstrated here raises questions regarding the reliability of enclosure-based measurements, which inherently exclude these parameters.
Resumo:
Hominid evolution in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa. One cause for the climatic and vegetation change often considered was uplift of Africa, but also uplift of the Himalaya and the Tibetan Plateau was suggested to have impacted rainfall distribution over Africa. Recent proxy data suggest that in East Africa open grassland habitats were available to the common ancestors of hominins and apes long before their divergence and do not find evidence for a closed rainforest in the late Miocene. We used the coupled global general circulation model CCSM3 including an interactively coupled dynamic vegetation module to investigate the impact of topography on African hydro-climate and vegetation. We performed sensitivity experiments altering elevations of the Himalaya and the Tibetan Plateau as well as of East and Southern Africa. The simulations confirm the dominant impact of African topography for climate and vegetation development of the African tropics. Only a weak influence of prescribed Asian uplift on African climate could be detected. The model simulations show that rainforest coverage of Central Africa is strongly determined by the presence of elevated African topography. In East Africa, despite wetter conditions with lowered African topography, the conditions were not favorable enough to maintain a closed rainforest. A discussion of the results with respect to other model studies indicates a minor importance of vegetation-atmosphere or ocean-atmosphere feedbacks and a large dependence of the simulated vegetation response on the land surface/vegetation model.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
The contribution of the evapotranspiration from a certain region to the precipitation over the same area is referred to as water recycling. In this paper, we explore the spatiotemporal links between the recycling mechanism and the Iberian rainfall regime. We use a 9 km resolution Weather Research and Forecasting simulation of 18 years (1990-2007) to compute local and regional recycling ratios over Iberia, at the monthly scale, through both an analytical and a numerical recycling model. In contrast to coastal areas, the interior of Iberia experiences a relative maximum of precipitation in spring, suggesting a prominent role of land-atmosphere interactions on the inland precipitation regime during this period of the year. Local recycling ratios are the highest in spring and early summer, coinciding with those areas where this spring peak of rainfall represents the absolute maximum in the annual cycle. This confirms that recycling processes are crucial to explain the Iberian spring precipitation, particularly over the eastern and northeastern sectors. Average monthly recycling values range from 0.04 in December to 0.14 in June according to the numerical model and from 0.03 in December to 0.07 in May according to the analytical procedure. Our analysis shows that the highest values of recycling are limited by the coexistence of two necessary mechanisms: (1) the availability of sufficient soil moisture and (2) the occurrence of appropriate synoptic configurations favoring the development of convective regimes. The analyzed surplus of rainfall in spring has a critical impact on agriculture over large semiarid regions of the interior of Iberia.
Resumo:
The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.
Resumo:
We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions and examine its impact with a coupled ocean-atmosphere climate model. If sufficiently large amounts of water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the tropospheric climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer than the residence time of aerosol in the stratosphere. In particular, northern hemisphere high latitude cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883. We hypothesize that moist coignimbrite plumes caused by pyroclastic flows travelling over ocean rather than land, resulting from an eruption close enough to the ocean, might provide the additional source of stratospheric water vapour.
Resumo:
Estimating snow mass at continental scales is difficult, but important for understanding land-atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes. Remote sensing provides the only consistent global observations, butwith unknown errors. Wetest the theoretical performance of the Chang algorithm for estimating snow mass from passive microwave measurements using the Helsinki University of Technology (HUT) snow microwave emission model. The algorithm's dependence upon assumptions of fixed and uniform snow density and grainsize is determined, and measurements of these properties made at the Cold Land Processes Experiment (CLPX) Colorado field site in 2002–2003 used to quantify the retrieval errors caused by differences between the algorithm assumptions and measurements. Deviation from the Chang algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two and three in calculating snow mass. The possibility that the algorithm performsmore accurately over large areas than at points is tested by simulating emission from a 25 km diameter area of snow with a distribution of properties derived from the snow pitmeasurements, using the Chang algorithm to calculate mean snow-mass from the simulated emission. The snowmass estimation froma site exhibiting the heterogeneity of the CLPX Colorado site proves onlymarginally different than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E measurements.