997 resultados para Land Utilization.
Resumo:
Mode of access: Internet.
Resumo:
Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin
Resumo:
Mode of access: Internet.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.
Resumo:
Includes index.
Resumo:
Bibliography: p. 18-19.
Resumo:
"Designed to supplement and bring up to date the key sections of the Economic handbook of the Pacific area, published by the Institute of Pacific relations in 1934."--pt. I, p. V.
Resumo:
This article compares the land use in solar energy technologies with conventional energy sources. This has been done by introducing two parameters called land transformation and land occupation. It has been shown that the land area transformed by solar energy power generation is small compared to hydroelectric power generation, and is comparable with coal and nuclear energy power generation when life-cycle transformations are considered. We estimate that 0.97% of total land area or 3.1% of the total uncultivable land area of India would be required to generate 3400 TWh/yr from solar energy power systems in conjunction with other renewable energy sources.
Resumo:
Aquatic vegetation is an essential component of the aquatic ecosystem with both positive and negative implications on the water body. Efforts are always made to curtail the excessive growth of aquatic plants in order to prevent them from becoming a nuisance in the ecosystem. One of the ways of solving such problem is the positive economic use of such plants. Utilization as a method of weed control within the aquatic ecosystem is considered to be one of the safest methods of weed control as this provides the riparian communities double advantages in terms of save environment and personal benefits of the plant. The flora diversity of freshwater and brackish environments posses a great potential to both man and higher animals alike. Due to this fact, this paper attempt to review the exploited and unexploited aquatic plants resources of many of our water bodies in Nigeria both economica/ly and socially, to the populace. Recommendations are also advanced for further studies that will enhance sound management of the resources for maximum benefits and sustainability
Resumo:
Mimeographed.
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.